Реактивный бомбомет «хеджехог» — КиберПедия 

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Реактивный бомбомет «хеджехог»

2022-10-28 47
Реактивный бомбомет «хеджехог» 0.00 из 5.00 0 оценок
Заказать работу

 

В начале 1942 года капитан 1 ранга Хэммонд, служивший в аппарате военно-морского атташе в Лондоне, получил возможность ознакомиться с новым образцом противолодочного оружия. Эта установка использовала принципиально новый способ метания глубинных бомб. Она состояла из стального лотка, в котором были установлены 4 ряда похожих на иглы стержней. Отсюда ее название: «hedgehog» — «еж». Фактически это была ракетная пусковая установка, однако она выпускала необычные ракеты.

Установка выстреливала на значительное расстояние 24 снаряда. Эти снаряды надевались на штыри бомбомета, и зарядка установки была очень простой. Взрыв бомбы происходил при контакте с целью, как у обычного артиллерийского снаряда. Заброшенные в воду, бомбы погружались очень быстро, напоминая стаю стальных барракуд, стальных барракуд со смертельным укусом.

Бомба «хеджехога» требовала прямого попадания в подводную лодку, чтобы взорваться. Она не имела огромного разрывного заряда, как обычная «бочка». Однако ее разрушающее действие при попадании было ничуть не меньше, чем у артиллерийского снаряда. То, что бомба взрывалась только при прямом попадании, в одном отношении было скорее преимуществом, чем недостатком. Обычная глубинная бомба взрывалась, опустившись на заданную глубину, и охотники наверху не могли знать, попала она в яблочко или взорвалась в миле от цели. А вот взрыв бомбы «хеджехога» означал попадание, разве что на мелководье бомба взрывалась, ударившись о дно. В этом случае неопределенность сохранялась, зато в открытом океане взрыв говорил эсминцу, что цель поражена. И это означало, что лодка получила серьезные повреждения.

Капитан 1 ранга Хэммонд сразу стал энтузиастом нового оружия. Из Англии образец «хеджехога» был направлен в Соединенные Штаты. Непривычный бомбомет с его стреляющими штырями и бомбами-ракетами создавался в обстановке строжайшей секретности. Его устанавливали на борту эскортных кораблей тайно, словно размещали контрабанду. После первых испытаний на американских эсминцах новое оружие получило высокую оценку. В конце концов его начали широко устанавливать на фрегатах и эскортных миноносцах.

Взрыв бомбы при прямом попадании был не единственным достоинством «хеджехога». Он обладал и более ценным качеством. Так как снаряды «хеджехога» выбрасывались вперед по ходу корабля, оружие можно было использовать до того, как будет потерян акустический контакт с подводной лодкой. Другими словами, противолодочный корабль следил за лодкой, стреляя из «хеджехога», то есть не вслепую, как при использовании обычных глубинных бомб. При наведении бомбомета имелась возможность в какой-то степени учесть ошибки, которые вносят маневрирование корабля, качка и другие факторы.

Тяжелый многоствольный бомбомет давал слишком сильную отдачу, и потому не подходил для установки на малых кораблях. Поэтому был создан маленький образец, выстреливающий 6 бомб. Это оружие было названо «мышеловкой».

Для испытаний «мышеловки» были установлены на нескольких эсминцах. После получения положительных результатов эти бомбометы начали устанавливать на различных противолодочных кораблях, включая малотоннажные. «Мышеловка» могла нанести сильный удар, ведь ее 65-фн бомба, снаряженная торпексом, содержала столько же взрывчатки, что и бомба «хеджехога». Но, хотя англичане использовали «мышеловку» с большим успехом, американские корабли применяли ее значительно реже. Насколько известно, ни одна подводная лодка не попалась в американскую «мышеловку».

Зато «хеджехог» часто применялся поисково-ударными группами. На Тихом океане среди экипажей эсминцев он пользовался еще большей популярностью, что, вероятно, было обусловлено состоянием моря и погоды.

Установки, стреляющие вперед по курсу корабля, не привели к отмиранию обычных глубинных бомб. В течение всей войны «бочки» и «капельки» исправно летели в воду с палуб эсминцев. Американские эсминцы не имели «хеджехогов», реактивные бомбометы устанавливались на эскортных миноносцах и фрегатах, появившихся в середине войны. Их снаряды могли нанести смертельный укол, но им требовалось попасть в цель. В то же время разрыв обычной глубинной бомбы даже на некотором расстоянии от корпуса лодки тоже приводил к желаемому результату. Обычные глубинные бомбы часто использовались в дополнение к залпу «хеджехога». Они должны были добить поврежденную лодку или достать лодку, погрузившуюся слишком глубоко. Тяжеловесная глубинная бомба была необходима для взрыва на большой глубине, если ситуация не позволяла использовать «хеджехог».

 

Сонар

 

При использовании глубинных бомб и снарядов «хеджехогов» возникала та же проблема, что и при обычной артиллерийской стрельбе — наводка. Требовалось обнаружить лодку и установить ее место нахождения. После неожиданных и сокрушительных успехов подводных лодок в 1914 году англичане приложили максимум усилий, чтобы создать прибор, способный обнаружить погрузившуюся подводную лодку. В результате был создан гидрофон — чувствительный акустический приемник, который мог засечь шумы, создаваемые движущейся подводной лодкой. Вмонтированный в днище корабля, гидрофон передавал оператору шум винтов лодки и давал общее направление на нее. Судя по всему, первый случай обнаружения подводной лодки гидрофоном имел место 23 апреля 1916 года, когда UC-3, попавшая в противолодочную сеть, была выслежена и уничтожена надводным кораблем.

В 1916 году американский флот разработал и начал устанавливать на своих кораблях «слушающее устройство» SC, аналогичное британскому гидрофону. К концу Первой Мировой войны такое устройство широко применялось противолодочными кораблями союзников, а проведенные улучшения сделали его очень чувствительным. Опасаясь обнаружения, подводная лодка могла на короткое время отключать моторы или вообще неподвижно отлеживаться на морском дне. Но гидрофон мог засечь самый слабый звук — даже тихое жужжание моторчика гирокомпаса.

Однако гидрофон имел и существенные недостатки. Прежде всего, он воспринимал шумы винтов всех кораблей, находящихся поблизости, а не только подводной лодки. Чем выше были его акустические качества, тем больше шумов он принимал. Оператор прибора SC не мог отстроиться от посторонних шумов. В головных телефонах постоянно слышались шуршание и потрескивание, поэтому требовалось обладать острым слухом и уметь различать шумы.

Хотя гидрофон и давал общее направление на подводную лодку, он не определял расстояние. В конце Первой Мировой войны охотники за подводными лодками продолжали стоять перед проблемой определения расстояния, от чего зависела точность выхода корабля на цель. Поэтому гидрофон не решал всех проблем. Опытный оператор был способен обнаружить находящуюся под водой лодку и указать примерное направление на нее. Однако он не мог определить расстояние до лодки.

В период между войнами достижения электроники позволили преодолеть некоторые недостатки гидрофона. Британский и американский флоты создали устройство, способное измерять расстояние до погрузившейся лодки. Это высокочастотное электронное устройство действовало, используя принцип эхолокации. Англичане назвали его асдиком, а американцы — сонаром.

Описание электронной части сонара было бы слишком сложным, поэтому мы не будем вдаваться в детали того, «как» это происходит, а лишь кратко изложим, «что» происходит. Сонар расположен в обтекаемом контейнере под днищем корабля. Оператор может использовать его двумя способами: или просто слушать шумы, чтобы засечь звук винтов или внутренних механизмов лодки, или вести эхолокацию, чтобы обнаружить лодку и замерить расстояние до нее. Оба способа основаны на законах гидроакустики. Прослушивание означает именно прослушивание. Оператор сонара слушает все подводные шумы и старается различить среди них те, которые издает подводная лодка. Определение дистанции и направления происходит несколько сложнее.

Эхолокация — это процесс определения пеленга и дистанции до подводного объекта путем посылки направленного звукового сигнала и приема отраженного эха направленным звукоулавливающим устройством. В этом случае оператор сонара посылает в воду острый пучок звуковых импульсов — высокое «динь». Как и радиоволна, акустический сигнал может идти в воде многие мили, пока не встретит какое-то препятствие. Обладая особыми свойствами, акустический сигнал отражается от встреченного объекта. В результате это «динь» превращается в резиновый мячик, который, отскочив от цели, возвращается к бросившему его. Интервал времени до возвращения сигнала (эха) дает расстояние до цели, а траектория дает пеленг на цель.

Кроме того, акустический сигнал, отразившись от движущегося объекта, меняет свою частоту (эффект Допплера). Это может подсказать оператору характер перемещений цели. По величине изменения частоты опытный оператор сонара всегда определит, что это такое: движущийся корабль, неподвижные обломки, подводная лодка или кит.

С появлением сонара многие оптимисты решили, что подводная лодка потеряла свой плащ-невидимку. Любой противолодочный корабль, оснащенный сонаром, мог сесть на хвост лодке. После этого оставалось лишь засыпать ее глубинными бомбами.

И снова оптимизм оказался чрезмерным. Подводные лодки Деница попытались обмануть сонар с помощью имитационных патронов «Pillenwerfer» — специальных химических патронов, создающих облако воздушных пузырьков, отражающих акустический сигнал. Но этот имитатор не создавал эффекта Допплера, и опытные операторы вскоре научились отличать действительные и ложные подводные цели. Поэтому воздушные пузырьки не помогли. Более того, они скорее помогали акустикам определять дистанцию, чем мешали.

Но работа с сонаром требовала от оператора умения быстро ориентироваться в какофонии звуков, пойманных акустическими приемниками, и способности идентифицировать эхо-сигналы. Лишь очень хорошо подготовленный человек мог справиться с этим. И лишь хорошо подготовленные офицеры могли использовать полученную информацию наилучшим образом.

Как уже говорилось, постоянно поддерживать акустический контакт оказалось невозможно. Например, эсминец мог установить контакт в 10.15, потерять его в 10.16, снова восстановить в 10.30, удерживать до 10.45 и снова потерять, выходя в атаку, когда дистанция сократится до 100 ярдов. Более того, грохот разрывов глубинных бомб временно оглушал приемники, а созданные ими водяные вихри помогали подводной лодке скрыться. В таких условиях контакт можно было потерять окончательно.

Морская вода состоит из слоев различной плотности. Эти скачки плотности в основном вызваны перепадами температуры (на поверхности вода, как правило, теплее, чем в глубине) или различным уровнем солености. Подводная лодка может избежать обнаружения сонаром, если укроется под слоем более плотной воды. На границе слоев происходит преломление и отражение акустического сигнала, и луч уходит в сторону. Кроме того, лодка может использовать собственный сонар для обнаружения на поверхности корабля, который охотится за ней.

Поэтому игра в кошки-мышки не всегда заканчивается в пользу охотника. И подводная лодка совсем не устарела после появления сонара.

Опыты с гидролокаторами начались на американских эсминцах еще в 1934 году. Это устройство было установлено на кораблях ДЭМ-20 капитана 2 ранга Дж. К. Джоунса. Эсминцы «Раберн», «Уотерс», «Тэлбот» и «Дент», а также 2 подводные лодки стали первыми американскими кораблями, получившими гидролокаторы. Когда ситуация в Европе начала принимать угрожающий характер, флот решил ввести в строй старые четырехтрубники и оснастить их сонарами для использования в качестве противолодочных кораблей. К сентябрю 1939 года около 60 эсминцев американского флота получили сонар. В этот же период флот открыл первую школу гидроакустиков.

 

Школы гидроакустиков

 

В 1939 году в Сан-Диего была создана школа гидроакустиков Западного Побережья. Начало было весьма скромным. Школе передали пару эсминцев ДЭМ-20, базирующихся в Сан-Диего. Они должны были демонстрировать работу сонара и учить обращению с ним. Но постепенно школа в Сан-Диего расширялась, и в конце концов в ней уже занимались 1200 курсантов.

Одновременно была создана школа Восточного Побережья. Она открылась на базе подводных лодок в Нью-Лондоне 15 ноября 1939 года. Начальником школы был назначен капитан 1 ранга Ричард С. Эдвардс. Инструктором служил старший радист У.Э. Брасуэлл. Первый класс гидроакустиков состоял всего из 16 человек, которые занимались на 4 четырехтрубниках Атлантического флота. Этими эсминцами были «Бернаду», «Коул», «Дюпон» и «Эллис».

Осенью 1940 года школа была передислоцирована в Ки-Уэст во Флориду, где погода и море больше подходили для учебных занятий по гидроакустике. Капитан 1 ранга Эдвардс, который стал командующим подводными силами Атлантического флота, вернулся в строй. Школа в Ки-Уэсте открылась в декабре 1940 года, и ее начальником стал капитан 2 ранга Э.Г. Джоунс, командир ДЭМ-54. Этот дивизион — эсминцы «Рупер», «Джейкоб Джоунс», «Герберт» и «Дикерсон» — обеспечивал учебный процесс.

Школа в Ки-Уэсте и школа в Сан-Диего работали с полным напряжением, когда Соединенные Штаты вступили в войну. К этому времени уже 170 американских эсминцев были оснащены сонарами.

Отдельные учебные центры были созданы в Куонсете (штат Род-Айленд), на Бермудах, в Гуантанамо, на Тринидаде, в Ресифе (Бразилия). Обучение проводилось на американских эсминцах и других противолодочных кораблях, а роль целей исполняли американские подводные лодки. Аналогичные центры были открыты в Пирл-Харборе и других базах Тихоокеанского флота.

 


Поделиться с друзьями:

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.025 с.