Охлаждение (нагревание) тел конечных размеров — КиберПедия 

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Охлаждение (нагревание) тел конечных размеров

2022-11-27 54
Охлаждение (нагревание) тел конечных размеров 0.00 из 5.00 0 оценок
Заказать работу

Охлаждение параллелепипеда

Z
Рассмотрим охлаждение параллелепипеда в среде с постоянной температурой (tср) и с постоянным коэффициентом теплоотдачи a на всех его гранях. В начальный момент времени (t=0) все точки параллелепипеда имеют одинаковую температуру (t0).

 

 


                                                                                                                        

0
- X
X
                                                                                          

                                                                                                                                    

2dy
                                                                                                                                         

                                                                                                                                             

                                                                                                                               

2dx
- Y
- Z
                                                                                                                             

     
 

 

 


Рисунок 12.7 К охлаждению параллелепипеда

 

Параллелепипед c размерами 2dx ´ 2dу ´ 2dz является однородным и изотропным.

Требуется найти распределение температуры в параллелепипеде для любого момента времени, а также среднюю температуру, необходимую для определения количества отведенной (подведенной) теплоты.

Поместим начало координат в центре параллелепипеда. При этом дифференциальное уравнение запишется следующим образом:

                                      (12.40)

Нахождение аналитического решения этого уравнения, дополненного условиями однозначности, представляет собой довольно сложную задачу.

Параллелепипед конечных размеров можно рассматривать как тело, образованное пересечением соответственно трех взаимно перпендикулярных неограниченных пластин конечной толщины.

Доказано, что решение таких задач представляется произведением безразмерных температур для тел неограниченных размеров, в результате пересечения которых образовалось рассматриваемое тело.

Параллелепипед образован в результате пересечения трех взаимно перпендикулярных неограниченных пластин конечными толщинами 2dx, 2dу, 2dz. Следовательно, для него и решение можно представить как произведение безразмерных температур для трех безграничных пластин:

Q = Qx × Qy × Qz                                                  (12.41) 

Множители в уравнении (12.41) могут быть рассчитаны по уравнению (12.20) или определены по номограммам.

Этот метод известен в теории теплопроводности под названием теоремы о перемножении решений.

Полученное решение справедливо и для нахождения средней температуры:

                                                          (12.42)

Множители в уравнении (12.42) находятся по формуле (12.27).

12.8.2 Охлаждение (нагревание) длинного прямоугольного стержня

Поперечное сечение стержня представляет собой прямоугольник с размерами 2δх × 2δу. Такое тело можно рассматривать как результат взаимного пересечения двух неограниченных пластин толщиной 2δх и 2δу, условия однозначности для которых такие же, как и для образовавшегося стержня. Безразмерное температурное поле для поставленной задачи:

Q = Qx × Qy                                                            (12.43) 

Множители в уравнении (12.43) также могут быть рассчитаны по уравнению (12.20) или определены по номограммам.

 

Рисунок 12.8 К охлаждению полуограниченного прямоугольного стержня

12.8.3 Охлаждение цилиндра конечной длины

Рисунок 12.9 К охлаждению цилиндра конечной длины

Цилиндр конечной длины можно рассматривать как результат пересечения безграничного цилиндра радиусом r0 и пластины толщиной 2δZ. Следовательно, и безразмерную температуру для такого тела можно записать как:

Q = Qr × Qz                                                       (12.44) 

Полученные решения для полуограниченного прямоугольного стержня и цилиндра конечной длины  (формулы 12.43 и 12.44) справедливы и для нахождения средних температур.

Кроме того, следует подчеркнуть, что все решения, полученные выше справедливы как для охлаждения, так и для нагрева тел неограниченных и конечных размеров.


Поделиться с друзьями:

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.006 с.