Расчетно – графическая работа 2 — КиберПедия 

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Расчетно – графическая работа 2

2022-09-11 20
Расчетно – графическая работа 2 0.00 из 5.00 0 оценок
Заказать работу

РАСЧЕТНО – ГРАФИЧЕСКАЯ РАБОТА 2

на тему: Передатчики с угловой модуляцией

Специальность: 050719 Радиотехника, электроника и телекоммуникации

Выполнила Наби П.                                                  Группа БРЭ-09-16

Номер зачетной книжки: 093084

Руководитель: старший преподаватель Кондратович А. П.

__________________________ «____» _________________________2011 г.

Алматы 2011

Содержание

1 Угловая модуляция…………………………………………………………......3

1.1 Частотная модуляция…………………………………………………….…..4

1.2  Частотный модулятор………………………………………………….…....6

1.3 Достоинства частотной и фазовой модуляций…………………………......7

2 Прямые и косвенные способы получения ЧМ и ФМ колебаний….…......…8

3 Построение передатчиков с угловой модуляцией………………………..….9

3.1 Передатчики низовой радиосвязи…………………………………….…....10

3.2Передатчики на УКВ……………………………………………….…….....11

Заключение…………………………………………………………….………...12

Список литературы………………………………………………….………..…13

Угловая модуляция

 

 

Формирование радиочастотных сигналов, имеющих заданные временные, спектральные и энергетические характеристики, их последующая передача по специальным направляющим электромагнитным системам или через свободное пространство к потребителю осуществляется с помощью радиопередающего устройства (РПДУ).

Современное РПДУ представляет сложное устройство, состоящее из большого числа каскадов и цепей. Для генерирования и формирования радиосигналов используются различные приборы и активные элементы (АЭ): лампы, транзисторы и т.д. Основными электрическими характеристиками передатчика, определяющими его конструкцию, являются мощность, диапазон несущих частот, вид и требуемое качество модуляции.

Передатчики с угловой модуляцией (УМ) получили широкое распространение в радиосвязи.

Угловая модуляция может быть частотной или фазовой; она применяется в системах низовой радиосвязи различных диапазонов частот, в радиовещании на УКВ, в звуковом сопровождении телевизионного вещания, наземной радиорелейной связи прямой видимости, тропосферной и космической связи. Кроме того, угловая модуляция используется в радиотелеметрии, в системах радиоуправления, в некоторых системах радионавигации и радиолокации. Упрощенно ЧМ и ФМ представляются в виде:

 

                                 (1)

где m – индекс модуляции;

W - частота модулирующего колебания

 

Модуляция называется фазовой, если индекс модуляции m пропорционален амплитуде модулирующего сигнала UW  и не зависит от его частоты W.

Модуляция называется частотной, если девиация (отклонение) частоты Dw от среднего значения w0 пропорциональна UW  и не зависит от частоты W, т. е. если индекс модуляции m  пропорционален UW и обратно пропорционален W.[1]

Основные характеристики и показатели качества при УМ определяются статической модуляционной характеристикой (СМХ) wЕмод или fЕмод, где Емод – постоянное напряжение, подаваемое на вход модулятора.[1]

Рисунок 2 – СМХ

Динамические модуляционные характеристики: амплитудная и частотная.

 

Рисунок 3 – Амплитудная ДМХ

Рисунок 4 – Частотная ДМХ

 

 

Частотная модуляция

 

 

При частотной модуляции амплитуда несущего колебания остается постоянной, а несущая частота ω0 изменяется во времени по закону модулирующего сигнала.[2] 

Рисунок 1.1 - Частотная модуляция:

 

    а – несущее колебание;

    б – модулирующий сигнал;

    в – частотно – модулированный сигнал;

     и н – мгновенное значение напряжения несущего колебания;

    и – мгновенное значение напряжения модулирующего сигнала;

    и чм – мгновенное значение напряжения частотно – модулированного сигнала;

    t – текущее значение времени 

 

На рисунке 1.1 показаны графики модулирующего синусоидального звука и колебания с переменной высокой частотой, полученного в результате частотной модуляции. Во время первого положительного полупериода звукового колебания частота несущего колебания возрастает, доходит до наибольшего значения, а затем возвращается к первому значению. В течение другого отрицательного полупериода звука частота несущего колебания уменьшается, доходит до наименьшего значения и снова принимает первоначальное значение. Чем больше амплитуда модулирующего сигнала, тем сильнее изменяется частота.

При частотной модуляции модулируемым параметром является частота гармонического колебания ω0, которая получает приращение Δω, зависящее от времени и пропорциональное мгновенному значению модулирующего сигнала U. В случае гармонического колебания мгновенная частота ω не меняется во времени, она равна несущей частоте ω0.
    При частотной модуляции частота несущего колебания ω связана с

модулирующим сигналом U зависимостью:

                                          ω = ω 0 + k ч U                                                 (2)


где ω 0 несущая частота несущего колебания;

k ч размеренный коэффициент пропорциональности между частотой и напряжением, рад / (В·с).


    Максимальное отклонение мгновенного значения частоты модули-рованного колебания от среднего значения называется девиацией частоты.

                                   ω д = ω m ф = k ч U / ω,                                          (3)

где ω - мгновенное значение круговой частоты;

m ф - девиация фазы несущего колебания (индекс частотной модуляции);

U – амплитуда модулирующего сигнала.     

 

 

Частотный модулятор

Наибольшее применение имеет частотный модулятор на основе варикапа – полупроводникового диода с обратно смещенным p-n-переходом. Закон изменения емкости p-n-перехода, называемой барьерной, или зарядной, от величины обратного напряжения U имеет вид:

 

                                    C(U)=Cнач / (1 + |U|/φ0)΄                                  (4)

 

где Снач – начальная емкость;

      φ0 =0,5 … 0,7 В (для кремния) - контактная разность потенциалов.

Рисунок 1.2 – График зависимости C(U)

Рисунок 1.3 - Схема частотного модулятора с варикапом, подключенным к контуру автогенератора

 

 

Передатчики на УКВ

Передатчики для радиовещания на УКВ и звукового сопровождения телевидения должны обеспечивать высокое качество звукового вещания.

Передатчики мощностью 4…5 и 15 кВт для повышения надежности используют принцип построения со сложением мощностей двух полукомплектов, возбудители обеспечиваются 100%-ным резервированием.

Обеспечение высоких качественных показателей представляет серьезную проблему, которая решается в основном возбудителе.

Возбудитель УКВ станции ЗПУКВ-15 выполнен по схеме рисунка 7. Задающий генератор 1 обеспечивает высокостабильные колебания с частотой 80…90 кГц, которые модулируются по фазе в модуляторе 2, где используется импульсно-фазовая модуляция обеспечивающая девиацию фазы Df»140…1500. Затем частота умножается в 9 раз. Сигналом второго канала в модуляторе 8 производится амплитудная модуляция колебаний поднесущей частоты 31,25 кГц, при этом образуется спектр надтональных частот 16,25…46,25 кГц. Этим сигналом производится вторичная ФМ в фазовом модуляторе 4, где девиация фазы не превышает 7…100, так как модулирующий сигнал высокочастотный. Интегрирующие цепи 6 обеспечивают преобразования ФМ в ЧМ. Далее частота еще раз умножается в 9 раз и достигает рабочего диапазона 66…73 МГц. Модулирующие сигналы каналов подвергаются частотной предкоррекции цепью с постоянной времени 50 мкс.[1]

Рисунок 7 – Структурная схема возбудителя и предварительного усилителя передатчика УКВ ЧМ вещания с возможностью стереофонической работы

 


 

Заключение

Угловая модуляция обладает несколькими важными достоинствами. Так, мощность передатчика не изменяется при модуляции, она постоянна и равна пиковой,, тогда как при АМ, например, мощность несущей должна быть в четыре раза меньше пиковой. Усилитель мощности передатчика с угловой модуляцией работает при постоянной амплитуде сигнала, поэтому к его линейности не предъявляется никаких требований. Он может работать в режиме класса С, т.е. с максимальным кпд. Передатчик не требует для модуляции большой мощности звукового сигнала, по схеме и конструкции он получается заметно проще АМ.

Постоянство мощности ЧМ и ФМ сигналов — существенное преимущество в связи с развитием сети ретрансляторов. Ведь УКВ слабо огибают земную поверхность, поэтому дальность действия УКВ передатчиков в обычных условиях не намного превосходит дальность прямой видимости. Дальность значительно увеличивается при наличии ретранслятора, а тем более — цепочки ретрансляторов, установленных на возвышенных местах. Из-за нелинейности усилительных каскадов ретранслятора слабые сигналы подавляются в нем сильными. Если к тому же сильный сигнал модулирован по амплитуде, то в ретрансляторе возникнет перекрестная модуляция и слабый сигнал так же окажется промодулирован, связь нарушится. При использовании угловой модуляции перекрестная модуляция не возникает. Наличие сильного сигнала приводит лишь к уменьшению коэффициента усиления ретранслятора, но не нарушает возможности проведения связи. По этой же причине передатчики с угловой модуляцией практически не создают помех телевизионному и радиоприему и значительно меньше мешают близко расположенным радиостанциям по сравнению с АМ.


Список литературы

1Проектирование радиопередающих устройств: Учебн. пособие для вузов/ В.В. Шахгильдян, В.А. Власов, В.Б. Козырев и др.; Под ред. В.В. Шахгильдяна.- 3-е изд.; перераб. и доп. М.: Радио и связь, 1993г.;

2 В. И. Каганов. Радиопередающие устройства. М. ИРПО: Издательский центр «Академия» 2002г.

 

 

РАСЧЕТНО – ГРАФИЧЕСКАЯ РАБОТА 2

на тему: Передатчики с угловой модуляцией

Специальность: 050719 Радиотехника, электроника и телекоммуникации

Выполнила Наби П.                                                  Группа БРЭ-09-16

Номер зачетной книжки: 093084

Руководитель: старший преподаватель Кондратович А. П.

__________________________ «____» _________________________2011 г.

Алматы 2011

Содержание

1 Угловая модуляция…………………………………………………………......3

1.1 Частотная модуляция…………………………………………………….…..4

1.2  Частотный модулятор………………………………………………….…....6

1.3 Достоинства частотной и фазовой модуляций…………………………......7

2 Прямые и косвенные способы получения ЧМ и ФМ колебаний….…......…8

3 Построение передатчиков с угловой модуляцией………………………..….9

3.1 Передатчики низовой радиосвязи…………………………………….…....10

3.2Передатчики на УКВ……………………………………………….…….....11

Заключение…………………………………………………………….………...12

Список литературы………………………………………………….………..…13

Угловая модуляция

 

 

Формирование радиочастотных сигналов, имеющих заданные временные, спектральные и энергетические характеристики, их последующая передача по специальным направляющим электромагнитным системам или через свободное пространство к потребителю осуществляется с помощью радиопередающего устройства (РПДУ).

Современное РПДУ представляет сложное устройство, состоящее из большого числа каскадов и цепей. Для генерирования и формирования радиосигналов используются различные приборы и активные элементы (АЭ): лампы, транзисторы и т.д. Основными электрическими характеристиками передатчика, определяющими его конструкцию, являются мощность, диапазон несущих частот, вид и требуемое качество модуляции.

Передатчики с угловой модуляцией (УМ) получили широкое распространение в радиосвязи.

Угловая модуляция может быть частотной или фазовой; она применяется в системах низовой радиосвязи различных диапазонов частот, в радиовещании на УКВ, в звуковом сопровождении телевизионного вещания, наземной радиорелейной связи прямой видимости, тропосферной и космической связи. Кроме того, угловая модуляция используется в радиотелеметрии, в системах радиоуправления, в некоторых системах радионавигации и радиолокации. Упрощенно ЧМ и ФМ представляются в виде:

 

                                 (1)

где m – индекс модуляции;

W - частота модулирующего колебания

 

Модуляция называется фазовой, если индекс модуляции m пропорционален амплитуде модулирующего сигнала UW  и не зависит от его частоты W.

Модуляция называется частотной, если девиация (отклонение) частоты Dw от среднего значения w0 пропорциональна UW  и не зависит от частоты W, т. е. если индекс модуляции m  пропорционален UW и обратно пропорционален W.[1]

Основные характеристики и показатели качества при УМ определяются статической модуляционной характеристикой (СМХ) wЕмод или fЕмод, где Емод – постоянное напряжение, подаваемое на вход модулятора.[1]

Рисунок 2 – СМХ

Динамические модуляционные характеристики: амплитудная и частотная.

 

Рисунок 3 – Амплитудная ДМХ

Рисунок 4 – Частотная ДМХ

 

 

Частотная модуляция

 

 

При частотной модуляции амплитуда несущего колебания остается постоянной, а несущая частота ω0 изменяется во времени по закону модулирующего сигнала.[2] 

Рисунок 1.1 - Частотная модуляция:

 

    а – несущее колебание;

    б – модулирующий сигнал;

    в – частотно – модулированный сигнал;

     и н – мгновенное значение напряжения несущего колебания;

    и – мгновенное значение напряжения модулирующего сигнала;

    и чм – мгновенное значение напряжения частотно – модулированного сигнала;

    t – текущее значение времени 

 

На рисунке 1.1 показаны графики модулирующего синусоидального звука и колебания с переменной высокой частотой, полученного в результате частотной модуляции. Во время первого положительного полупериода звукового колебания частота несущего колебания возрастает, доходит до наибольшего значения, а затем возвращается к первому значению. В течение другого отрицательного полупериода звука частота несущего колебания уменьшается, доходит до наименьшего значения и снова принимает первоначальное значение. Чем больше амплитуда модулирующего сигнала, тем сильнее изменяется частота.

При частотной модуляции модулируемым параметром является частота гармонического колебания ω0, которая получает приращение Δω, зависящее от времени и пропорциональное мгновенному значению модулирующего сигнала U. В случае гармонического колебания мгновенная частота ω не меняется во времени, она равна несущей частоте ω0.
    При частотной модуляции частота несущего колебания ω связана с

модулирующим сигналом U зависимостью:

                                          ω = ω 0 + k ч U                                                 (2)


где ω 0 несущая частота несущего колебания;

k ч размеренный коэффициент пропорциональности между частотой и напряжением, рад / (В·с).


    Максимальное отклонение мгновенного значения частоты модули-рованного колебания от среднего значения называется девиацией частоты.

                                   ω д = ω m ф = k ч U / ω,                                          (3)

где ω - мгновенное значение круговой частоты;

m ф - девиация фазы несущего колебания (индекс частотной модуляции);

U – амплитуда модулирующего сигнала.     

 

 

Частотный модулятор

Наибольшее применение имеет частотный модулятор на основе варикапа – полупроводникового диода с обратно смещенным p-n-переходом. Закон изменения емкости p-n-перехода, называемой барьерной, или зарядной, от величины обратного напряжения U имеет вид:

 

                                    C(U)=Cнач / (1 + |U|/φ0)΄                                  (4)

 

где Снач – начальная емкость;

      φ0 =0,5 … 0,7 В (для кремния) - контактная разность потенциалов.

Рисунок 1.2 – График зависимости C(U)

Рисунок 1.3 - Схема частотного модулятора с варикапом, подключенным к контуру автогенератора

 

 


Поделиться с друзьями:

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.06 с.