Георгий Гамов и его туннельный эффект — КиберПедия 

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Георгий Гамов и его туннельный эффект

2021-06-30 50
Георгий Гамов и его туннельный эффект 0.00 из 5.00 0 оценок
Заказать работу

 

Примерно в то же время, когда Эддингтон упорно настаивал в своей книге, что в звездах водород превращается в гелий, начался великий переворот в физике. Главными действующими лицами этого переворота были Луи де Бройль в Париже, Нильс Бор в Копенгагене, Эрвин Шрёдингер в Цюрихе и гёттингенские физики. Это были золотые двадцатые годы — годы расцвета гёттингенской школы физиков, руководимой Максом Борном, одним из основателей квантовой механики. Многие молодые физики, которые в то время съехались в Гёттинген со всего света, стали впоследствии знаменитыми учеными: Вернер Гейзенберг и Роберт Оппенгеймер, Поль Дирак и Эдвард Теллер. Одним из них был молодой выходец из России Георгий Гамов. Он занимался проблемой радиоактивности, а также вопросами естественного радиоактивного распада атомных ядер.

Существуют химические элементы, ядра атомов которых могут самопроизвольно распадаться. Из урана образуется при этом торий, из тория радий, который в свою очередь тоже распадается. Ядро наиболее широко распространенного изотопа радия состоит из 88 протонов и 138 нейтронов. Ядро радия испускает через определенное время два нейтрона и два протона. При этом масса ядра радия уменьшается. Четыре элементарные частицы, которые вылетают из ядра радия при радиоактивном распаде, остаются соединенными друг с другом. Они образуют ядро гелия. Было трудно понять, как ядро радия может испустить ядро гелия. Элементарные частицы, образующие ядро радия, размещены в очень малом объеме и притягиваются друг к другу чрезвычайно мощными силами ядерного взаимодействия. Ядерные силы намного превосходят электрическое отталкивание протонов. Если бы ядерных сил не было, то все протоны ядра радия разлетелись бы друг от друга. В то же время ядерные силы имеют очень небольшой радиус действия. Если удалить одну из элементарных частиц ядра достаточно далеко от остальных, то электрическое отталкивание будет преобладать, и частицы разлетятся. Классическая физика считает этот процесс невозможным, поскольку ядерные силы притягивают друг к другу элементарные частицы ядра. Однако в природе такой процесс происходит.

Гамов решил проблему распада радиоактивных атомов. Элементарные частицы в ядре радия действительно связаны друг с другом ядерными силами и не могут, вообще говоря, разлетаться. Однако квантовая механика утверждает, что существует небольшая, но конечная вероятность такого процесса. Хотя это невозможно в рамках классической механики, но часть атомного ядра, несмотря на мощные ядерные силы притяжения, может удалиться от остальных частиц настолько далеко, что возобладают силы электрического отталкивания и продукты реакции разлетятся. Этот процесс кажется невероятным, но он тем не менее происходит. Примерно один раз в тысячу лет атом радия может испустить ядро гелия.

Такое явление называют туннельным эффектом. Этот эффект был предсказан квантовой механикой. Название эффекта можно пояснить с помощью наглядной картины. Элементарные частицы, образующие ядро радия, связаны друг с другом ядерными силами. Они как бы отгорожены от внешнего мира кольцом высоких гор. Элементарные частицы в ядре не обладают достаточной энергией, чтобы перевалить через этот горный хребет. Классическая механика утверждает, что горы непреодолимы. Однако квантовая механика допускает процесс, при котором элементарная частица ядра может внезапно оказаться по другую сторону горного хребта. Иными словами, она как бы проскакивает на ту сторону через туннель, не поднимаясь в гору.

Если туннельный эффект позволяет элементарным частицам покинуть ядро, то, по мнению Гамова, может идти и обратный процесс: частицы из внешнего мира могут проникать в атомное ядро.

 

Туннельный эффект в звездах

 

Вернемся, однако, к звездам и к вопросу об источнике их энергии, который еще не был решен в двадцатые годы. Если с ядром радия может происходить процесс, запрещенный классической механикой, то почему подобное явление не может происходить с протонами на Солнце, пусть даже это и противоречит традиционной физике? В случае с ядром радия протоны могут разлетаться, только если они удалены на достаточное расстояние и силы электрического отталкивания превосходят силы ядерного притяжения. Но, несмотря на это, ядро радия распадается. Может быть, и протоны на Солнце могут сливаться друг с другом, хотя на первый взгляд их энергия не позволяет этого сделать?

Загадку об источнике энергии звезд решили физики Роберт Аткинсон и Фриц Хоутерманс. Они воспользовались представлениями Гамова о туннельном эффекте. В марте 1929 г. они послали в редакцию журнала «Zeitschrift fur Physik» статью под названием «К вопросу о возможности образования элементов в недрах звезд». Эта работа начиналась словами: «Не так давно Гамов показал, что из атомного ядра могут вылетать положительно заряженные частицы, тогда как по классическим представлениям их энергия недостаточно велика для этого процесса…» В этой статье Аткинсон и Хоутерманс объяснили, что, хотя в рамках классической физики ядра атомов водорода могут сливаться друг с другом только при температурах в несколько десятков миллиардов градусов, туннельный эффект допускает вероятность такого процесса уже при относительно низких температурах, существующих в недрах звезд. Хотя в звездах положительно заряженные протоны отталкиваются друг от друга и это электрическое поле напоминает высокие горы, препятствующие сближению протонов, протоны все же, пусть и очень редко, могут сблизиться друг с другом, словно пройдя под горами по туннелю. Сближение протонов происходит, несмотря на то, что энергия мала, чтобы они могли перевалить через «горную цепь» электрического отталкивания. Вероятность такого процесса не слишком велика, однако туннельный эффект позволяет протонам сливаться друг с другом в недрах звезд достаточно часто, чтобы энергия, которая освобождается при таком процессе, могла поддерживать жизнь звезды. Аткинсон и Хоутерманс подтвердили догадку Эддингтона: Солнце и звезды получают свою энергию за счет превращения водорода в гелий.

Работа Хоутерманса и Аткинсона заложила основы теории термоядерных реакций. Эта теория позволила понять процесс выделения энергии в недрах звезд. Энергетический источник Солнца и других звезд был найден.

Когда Роберт Юнг собирал материал для своей книги «Ярче тысячи солнц», Хоутерманс рассказал ему такую историю: «В тот же вечер, после того как мы закончили нашу статью, я пошел гулять с прелестной девушкой. Когда стемнело и одна за другой стали появляться звезды во всем их великолепии, моя спутница воскликнула: „Как прекрасно они сверкают! Не правда ли?“ Я выпятил грудь и произнес важно: „Со вчерашнего вечера я знаю, почему они сверкают“. Казалось, такое заявление ее не тронуло. Возможно, она не поверила ему. В тот момент она, вероятно, не испытывала ни малейшего интереса к каким бы то ни было проблемам». Такая история рассказана в книге Юнга.

Когда в 1965 г. меня пригласили в Гёттингенский университет, я хотел узнать, живет ли все еще эта дама в Гёттингене. Однако это намерение, как часто бывает, осталось невыполненным. Я встретил ее через семь лет в Афинах. Там происходила научная конференция, куда приехали и Аткинсоны, которые в это время жили в Америке, в Блумингтоне, шт. Индиана. Фрау Аткинсон, жизнерадостная уроженка Берлина, рассказала мне, что Хоутерманс действительно говорил ей про это открытие, но все происходило не так романтично, как описано у Юнга. Я узнал и еще некоторые важные подробности. Я спросил у Аткинсона, как возникла тогда идея этой работы. Он рассказал, что незадолго до этого прочел книгу Эддингтона и задумался над парадоксом выделения энергии в недрах звезд. С одной стороны, температуры в звездах не настолько велики, чтобы ядра атомов водорода могли сливаться друг с другом. С другой стороны, Эддингтон очень убедительно показал, что светимость звезд и Солнца может поддерживаться только за счет энергии ядерных реакций. Аткинсон рассказал об этом Хоутермансу. Прошло некоторое время, Гамов опубликовал свою работу, задача оказалась разрешимой, и они вдвоем решили ее.

С тех пор все узнали, что в звездах могут протекать ядерные реакции. Но какие ядерные реакции? Слияние протонов друг с другом или присоединение протонов к ядрам атомов? И если да, то к каким? Ответ на этот вопрос появился лишь почти через 10 лет.

 

Углеродный цикл [6]

 

Как превращается водород в гелий в недрах звезд? Первый ответ на этот вопрос нашли независимо друг от друга Ганс Бете в США и Карл-Фридрих фон Вайцзеккер в Германии. В 1938 г. они обнаружили первую реакцию, которая приводит к превращению водорода в гелий и может обеспечить необходимую энергию для поддержания жизни звезд. Время для этого пришло: 11 июля 1938 г. в редакцию журнала «Zeitschrift fur Physik» поступила рукопись Вайцзеккера, а 7 сентября того же года рукопись Бете поступила в редакцию журнала «Physical Review». В обеих работах излагалось открытие углеродного цикла. Бете и Кричфилд уже 23 июня послали работу, содержащую важнейшую часть протон-протонного цикла.

Этот процесс довольно сложен. Для его протекания необходимо, чтобы в звездах кроме водорода присутствовали и атомы других элементов, например углерода. Ядра атомов углерода играют роль катализаторов. О катализаторах мы хорошо знаем из химии. Протоны присоединяются к ядрам углерода, там же образуются атомы гелия. Затем ядро углерода выталкивает образовавшиеся из протонов ядра гелия, а само остается в результате этого процесса неизменным.

На рис. 3.2 показана схема этой реакции, имеющая вид замкнутого цикла. Рассмотрим эту реакцию, начиная с верхней части рисунка. Процесс начинается с того, что ядро атома водорода сталкивается с ядром углерода с массовым числом 12. Мы обозначаем его как С12. За счет туннельного эффекта протон может преодолеть силы электрического отталкивания ядра углерода и объединиться с ним. Новое ядро состоит уже из тринадцати тяжелых элементарных частиц. За счет положительного заряда протона заряд исходного ядра углерода увеличивается. При этом возникает ядро азота с массовым числом 13. Его обозначают как N13. Этот изотоп азота радиоактивен и через некоторое время испускает две легкие частицы: позитрон и нейтрино — элементарную частицу, о которой мы еще услышим. Таким образом, ядро азота превращается в ядро углерода с массовым числом 13, т. е. в С13. Это ядро снова имеет такой же заряд, как ядро углерода в начале цикла, но его массовое число уже на единицу больше. Теперь мы имеем ядро другого изотопа углерода. Если с этим ядром столкнется еще один протон, то вновь возникает ядро азота. Однако теперь оно имеет массовое число 14, это N14. Если новый атом азота столкнется с еще одним протоном, то он переходит в О15, т. е. в ядро кислорода с массовым числом 15. Это ядро тоже радиоактивно, оно вновь испускает позитрон и нейтрино и переходит в N15 азот с массовым числом 15. Мы видим, что процесс начался с углерода с массовым числом 12 и привел к появлению азота с массовым числом 15. Таким образом, последовательное присоединение протонов приводит к появлению все более тяжелых ядер. Пусть к ядру N15 присоединится еще один протон, тогда из образовавшегося ядра вылетают вместе два протона и два нейтрона, которые образуют ядро гелия. Тяжелое ядро вновь превращается в исходное ядро углерода. Круг замкнулся.

 

Рис. 3.2. Превращение водорода в гелий в углеродном цикле реакций. Обозначения элементарных частиц такие же, как на рис. 3.1. Красные волнистые стрелки показывают, что атом испускает квант электромагнитного излучения. Символом е+ обозначены позитроны, ν-нейтрино.

 

В результате четыре протона объединяются и образуют ядро гелия: водород превращается в гелий. В ходе этого процесса освобождается энергия, которой достаточно для того, чтобы звезды могли светить миллиарды лет. Разогрев звездного вещества происходит не на всех этапах рассмотренной нами цепочки реакций. Звездное вещество разогревается частично за счет квантов электромагнитного излучения, которые передают свою энергию звездному газу, а частично за счет позитронов, которые почти сразу же аннигилируют со свободными электронами звездного газа. При аннигиляции позитронов и электронов тоже образуются кванты электромагнитного излучения. Энергия этих квантов передается звездному веществу. Небольшая часть выделяющейся энергии уносится из звезды вместе с вылетающими нейтрино. О некоторых непонятных вопросах, связанных с нейтрино, речь пойдет в гл. 5.

В 1967 г. Бете была присуждена Нобелевская премия по физике за открытие углеродного цикла, которое было сделано им в 1938 г. вместе с фон Вайцзеккером. В этом случае Нобелевский комитет, по всей видимости, забыл, что честь этого открытия принадлежит не одному Бете.

Мы знаем, что такое циклическое превращение происходит в присутствии элементов-катализаторов: углерода и азота. Но в звездных недрах не обязательно должны присутствовать все три элемента. Вполне достаточно и одного из них. Если начнется хотя бы одна реакция цикла, то элементы-катализаторы возникнут в результате последующих этапов реакций. Более того, протекание циклической реакции приводит к тому, что возникает вполне определенное количественное соотношение между необходимыми изотопами. Это количественное соотношение зависит от температуры, при которой протекает цикл. Астрофизики могут в настоящее время с помощью своих спектроскопических методов провести достаточно точный количественный анализ космического вещества. По соотношению между количеством изотопов С12, С13, N14 и N15 часто можно не только установить, что в звездных недрах идет превращение вещества по углеродному циклу, но и при какой температуре происходят эти реакции. Однако водород может превращаться в гелий не только за счет углеродного цикла. Наряду с реакциями углеродного цикла происходят и другие, более простые превращения. Они-то и вносят основной вклад (по крайней мере на Солнце) в выделение энергии. Перейдем к рассмотрению этих реакций.

 

Протон-протонная цепочка

 

Для осуществления цикла реакций с участием углерода, о которых шла речь в предыдущем разделе, требуется некоторое количество углерода или азота. При этом сами атомы углерода или азота не участвуют в превращениях, они служат как бы «оболочкой», в которой с течением времени ядра водорода постепенно сливаются в ядра гелия. Однако в 1938 г. Ганс Бете и Чарльз Кричфилд показали, что образование гелия из водорода может происходить и без участия углерода или азота.

Схема этого процесса изображена на рис. 3.3. Два протона сталкиваются друг с другом и сливаются. При этом вылетают позитрон и нейтрино. Образовавшееся ядро состоит уже из одного протона и одного нейтрона. Это ядро имеет такой же заряд, как и ядро водорода, но оно в два раза тяжелее. Такой изотоп тяжелого водорода называют дейтерием. Если ядро водорода столкнется с ядром дейтерия, то они объединяются в атом гелия, который состоит из двух протонов и одного нейтрона. Такое ядро гелия не является «правильным» гелием. Это легкий изотоп Не3. Заряд его ядра совпадает с зарядом ядра гелия, а массовое число на единицу меньше. Если теперь два таких ядра «легкого» гелия столкнутся друг с другом, то при этом образуются «правильное» ядро гелия и два протона. В этой цепи реакций тоже происходит в конечном счете объединение четырех протонов с образованием одного ядра гелия.

 

Рис. 3.3. Ядерные реакции протон-протонной цепочки. Обозначения элементарных частиц такие же, как на рис. 3.2. В результате этих реакций водород тоже превращается в гелий. На верхней схеме показано, как два ядра водорода сталкиваются и образуют ядро дейтерия. В середине показано, как ядро дейтерия и ядро водорода объединяются в ядро изотопа гелия. При столкновении двух ядер этого изотопа гелия образуется нормальный гелий с массовым числом 4.

 

Какой же из двух процессов протекает в недрах звезд: углеродный цикл или протон-протонная цепочка? [7]

При достаточно высоких температурах в звездах могут протекать оба процесса. При температуре 10 миллионов градусов происходят в основном реакции протон-протонной цепочки. Если температура существенно выше, то будет преобладать выделение энергии за счет углеродного цикла.

Реакции протон-протонной цепочки были, по всей видимости, особенно важны при образовании первых звезд, возникших в нашей Вселенной, во время так называемого Большого взрыва, образовались только ядра водорода и гелия. Поэтому в первых звездах не было элементов-катализаторов, необходимых для работы углеродного цикла. Следовательно, их существование должно было поддерживаться за счет реакций протон-протонной цепочки. Ядра углерода возникли в недрах звезд позже из ядер гелия. Этот процесс мы рассмотрим в следующем разделе. Только после образования ядер углерода в последующих поколениях звезд появились элементы-катализаторы, которые необходимы для реакций углеродного цикла.

 


Поделиться с друзьями:

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.021 с.