Анализ существующих конструкций — КиберПедия 

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Анализ существующих конструкций

2021-03-17 114
Анализ существующих конструкций 0.00 из 5.00 0 оценок
Заказать работу

Анализ техники ходьбы по количестве точек опоры шагающих роботов.

Можно разделить на две, четыре, шесть. Рассмотрим особенности каждого из них.

Рассмотрим применение шагающего робота с двумя конечностями.

С давних пор идея прямохождения волнует воображение конструкторов и механиков. При проектировании шагающих роботов, передвигающихся на двух конечностях, исследователи вычленяют две основные проблемы. Во-первых, необходимо добиться, чтобы во время движения аппарат мог какое-то время устойчиво находиться в положении, когда его опорой является только одна конечность. При этом опора должна иметь достаточную прочность, чтобы выдержать всю массу агрегата, а приводы - достаточную мощность, чтобы обеспечивать поступательное движение. Второе - это сложные алгоритмы движения, имитирующие движения человеческого тела даже при обыкновенной ходьбе. Взаимосвязь между движениями отдельных частей двуногого робота, обеспечивающая ему устойчивое движение не только по прямой линии, но и в пространстве.

Обратив свое внимание на четвероногих животных, можно заметить, что при движении они сохраняют равновесие почти исключительно за счет динамической устойчивости. Условием устойчивого равновесия является требование, чтобы при движении центр тяжести такого робота в любой момент находился в пределах воображаемого треугольника, углами которого являются опорные в настоящий момент конечности. Исходя из этого, был разработан шагающий агрегат на четырех конечностях, алгоритм движения которого был определен таким образом, чтобы при его движении в любой момент времени в воздухе находилась только одна нога, а корпус имел опору одновременно на три точки и сохранял при этом статическую устойчивость.

Шестиногие шагающие роботы, по-видимому, являются самой многочисленной из всех когда-либо и где-либо разработанных категорий механизмов, способных перемещаться с помощью искусственных ног. Популярность этих роботов в значительной степени обусловлена тем, что проблемы обеспечения статической устойчивости движущихся шестиногих аппаратов решаются относительно просто по сравнению с другими конструкциями. Одной из проблем, которой уделяется существенное внимание при проектировании мобильных шагающих аппаратов, является уменьшение необходимой мощности источников питания и сокращение затрат энергии. Другими словами, необходимо повысить к.п.д. многоногих механизмов, т.е. уменьшить потребляемую мощность и повысить полезную развиваемую мощность. В самом деле, если учесть, что в общем случае каждая из n конечностей имеет две-три степени подвижности и управление каждой из степеней сопряжено с определенными затратами энергии, то очевидно, что сравнение шагающих и колесных транспортных средств по к.п.д. будет далеко не в пользу первых. В связи с этим, по-видимому, главная цель, к достижению которой должны стремиться исследователи сегодня, заключается в создании экспериментальных шагающих аппаратов, способных на практике продемонстрировать сочетание высоких функциональных возможностей с достаточно большой развиваемой мощностью при малых затратах энергии

Моделью с шестью ногами мы сможем продемонстрировать знаменитую походку «треножником», т е. с опорой на три ноги, которую используют большинство существ. На следующих рисунках темный кружок означает, что нога устойчиво поставлена на землю и поддерживает вес существа. Светлый кружок означает, что нога поднята и находится в движении. На рис 1 показано наше существо в позиции «стояния». Все ноги опираются о землю. Из положения «стояния» наше существо решает идти вперед. Для того чтобы сделать шаг, оно поднимает три из своих ног

 (см. светлые кружки на рис. 2), опираясь своим весом на три оставшиеся ноги (темные кружки). Заметьте, что ноги, поддерживающие вес (темные кружки), расположены в форме треножника (треугольника). Такая позиция является устойчивой, и робот не может упасть. На рис. 3 показано три остальные ноги (светлые кружки) могут двигаться и двигаются вперед. На рис. 4 перенос центра тяжести на других три опоры (тёмные кружки) и движение вперёд свободных ног (белые кружки).                                     

                                        

Рис.1 Исходное Рис.2. Перенос      Рис.3 Перенос  Рис.4 Перенос

положение     центра тяжести   свободных лап  центра тяжести

                                           

 

 

3. Обзор существующих конструкций

Создатели робота из Васедовского университета (Waseda University) в Токио и японская робототехническая компания Tmsuk надеются, что однажды, с помощью созданного ими двуногого робота люди, пользующиеся инвалидными колясками, смогут подниматься и спускаться по лестницам, а также переносить тяжелые вещи по неровным поверхностям.

Робот с батарейным питанием, под кодовым названием WL-16 (рис.5), по сути представляет собой алюминиевое кресло, закрепленное на двух группах телескопических ног. Ноги заканчиваются плоскими плитами, которые выполняют функцию ступней

WL-16 использует 12 силовых приводов помогают роботу совершать движения вперед, назад, в стороны (обычная длина шага 30 см)

 при этом он способен нести взрослого человека весом до 60 килограммов. Робот может корректировать свою «осанку» и двигаться плавно, даже если человек в кресле поворачивается или меняет свое положение. [2]

                            Рис. 5 Внешний вид робота WL-16

 

 

На сегодняшний день, одним из самых известных творений компании Boston Dynamics, принимающей активное участие в создании робота Urban Hopper, является робот BigDog.(рис. 6) Этот четвероногий робот предназначен для передвижения по пересеченной местности, переноса тяжелых грузов и способен преодолевать возвышенности и ямы. Робот собака предназначен для армии США – рабочее название Big Dog.

Длина робота BigDog — 0,91 метр, высота 0,76 метра, вес 110 килограммов. В настоящее время он способен передвигаться по труднопроходимой местности со скоростью 6,4 км в час, перевозить 154 кг груза и подниматься на 35 градусную наклонную плоскость.

BigDog приводится в движение двухтактным одноцилиндровым двигателем от карта со скоростью вращения 9000 об/мин, из-за чего слышен громкий звук мотора. В последующих версиях робота планируется исправить этот демаскирующий недостаток. Мотор служит приводом для гидронасоса, который в свою очередь питает гидродвигатели ног. В каждой из ног установлено по 4 гидродвигателя (два для бедренного сустава, и по одному для коленного и голеностопного суставов) общим числом 16. Каждый из гидродвигателей состоит из гидроцилиндра, сервоклапана, а также датчиков положения и усилия [4]

 

                       

             рис.6 Внешний вид робота BigDog

 

Известный многим робот BigDog обрел нового товарища из Китая. Китайские инженеры из Института автоматики создали модель четырехногого робота под названием FROG (Рис.7) (Four-legged Robot for Optimal Gait – четырехногий робот для оптимальной ходьбы). Однако в отличие от более взрослого собрата китайский вариант пока не отличается высокой скоростью передвижения. Правда и задачи у обоих устройств разные. Если основное назначение BigDog – переноска оборудования и раненых на поле боя, у FROG цель более мирная. Он будет выступать в качестве основы для создания роботизированной копии динозавров для музеев и выставок.

Строение робота

 Длина FROG-I – 1150 мм, высота – 950 мм, а ширина – 700 мм. Вес модели – 55 кг.

 Каждая нога имеет тазобедренное и коленное сочленение, приводимое в движение постоянным током в 48 В напряжения и 18 А силы, поступающим по электическим кабелям.

                           Рис. 7 Внешний вид робота FROG

 

Разработанный в сверхсекретном и сверхинтересном агентстве DARPA (Агентство по перспективным оборонным научно-исследовательским разработкам США) в сотрудничестве с Boston Dynamycs, этот робот стал кульминацией многолетних разработок. Он может развивать скорость до 2 метров в секунду, ориентироваться на любой местности, преодолевать практически любые ямы, бугры и болота. Этот гексапод (на человеческом языке - "шестилап") способен передвигаться на расстояние до 3,7 км без подзарядки. С помощью одного электропривода постоянного тока напряжением 24В и мощностью 240 Вт. Благодаря герметичному корпусу, RHex (рис.8) не боится даже воды. Управляется робот оператором, предел досягаемости 600 метров. Есть видеокамера и GPS приемник. Очевидно, основной задачей робота будет разведка. [3]

 

                Рис. 8 Внешний вид робота RHex

 

Шестиногий, пауко-подобный, шагающий робот Hexapod Anubis (рис.9) с поддержкой роботехнического зрения.

Подвижность робота обеспечивает система 3DoF - 3 сервопривода на каждой конечности определяют богатство и свободу механики движений. При чем надо отметить, что видеокамера Pan & Tilt тоже оснащена двумя дополнительными приводами. В итоге робот получил 20 приводов.

 Взаимодействие с роботом осуществляется по беспроводным каналам. На частоте 2.4Гц по Bluetooth осуществляется прием-передача данных с микроконтроллера. На частоте 1.2Гц посредством аналогового ресивера осуществлется прием данных с беспроводной камеры с их последующей оциврокой USB TV тюнером, либо через сетевую камеру Wi-Fi.

 Видеоданные анализируются программой робототехнического зрения Roborealm путем использования фильтров и алгоритмов. Численные результаты анализа передаются в скрипт VB.NET и робот получает команду на выполнение. Возможно использование ручного управления движением робота через виртуальный графический пульт. В данном режиме имеется возможность выбирать разновидность походки, скорость движения, высоту платформы, высоту поднятия ног от поверхности, наклоны во все стороны, переносы платформы во все стороны без наклона, вращение платформы, вращение камеры, вращение робота, двигение прямолинейно и боком, а также любая комбинациия всего перечисленного.

                         Рис. 9 Внешний вид робота Hexapod Anubis

Выбор электродвигателя


Поделиться с друзьями:

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.018 с.