Переваривание углеводов в желудочно-кишечном тракте — КиберПедия 

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Переваривание углеводов в желудочно-кишечном тракте

2021-02-01 74
Переваривание углеводов в желудочно-кишечном тракте 0.00 из 5.00 0 оценок
Заказать работу

Строение углеводов

По своему строению углеводы являются многоатомными спиртами с альдегидной или кетоновой группой (полигидроксиальдегиды и полигидроксикетоны). Наиболее известные углеводы (крахмал, глюкоза, гликоген) обладают эмпирической формулой (CH2O)6. Другие представителя класса не соответствуют данному соотношению, и даже могут включать атомы азота, серы, фосфора.

Классификация углеводов

Согласно современной классификации, углеводы подразделяются на три основные группы: моносахариды, олигосахариды и полисахариды.

Классификация углеводов

Моносахариды подразделяются на альдозы и кетозы в зависимости от наличия альдегидной или кетогруппы. Альдозы и кетозы, в свою очередь, разделяются в соответствии с числом атомов углерода в молекуле: триозы, тетрозы, пентозы, гексозы и т.д.

Олигосахариды делятся по числу моносахаридов в молекуле: дисахариды, трисахариды и т.д.

Полисахариды подразделяют на гомополисахариды, т.е. состоящие из одинаковых моносахаров, и гетерополисахариды, состоящие из различных моносахаров.

 

Моносахариды - это структурная единица любых углеводов

Моносахариды – это углеводы, которые не могут быть гидролизованы до более простых форм углеводов.

Классификация моносахаридов

В свою очередь они подразделяются:

· на стереоизомеры по конформации асимметричных атомов углерода – например, L- и D-формы,

· в зависимости от конформации НО-группы первого атома углерода – α- и β-формы,

· в зависимости от числа содержащихся в их молекуле атомов углерода – триозы, тетрозы, пентозы, гексозы, гептозы, октозы,

· в зависимости от присутствия альдегидной или кетоновой группы – кетозы и альдозы.

 

Производные моносахаридов

В природе существуют многочисленные производные как перечисленных выше моносахаров, так и других. К ним, например, относятся:

Уроновые кислоты – дериваты гексоз, имеющие в 6 положении карбоксильные группы, например, глюкуроновая, галактуроновая, идуроновая, аскорбиновая кислоты. Они часто входят в состав протеогликанов.

Строение некоторых производных моносахаридов

 

 

Аминосахара – производные моносахаров, содержащие аминогруппы, например, глюкозамин или галактозамин. Эти производные обязательно входят в состав дисахаридных компонентов гетерополисахаридов. Ряд антибиотиков (эритромицин, карбомицин) содержат в своем составе аминосахара.

Сиаловые кислоты являются N- или O-ацилпроизводными нейраминовой кислоты, которую можно рассматривать как производное глюкозы. Они, наряду с аминосахарами, входят в состав гликопротеинов и гликолипидов (ганглиозидов).

Гликозиды – соединения, образующиеся путем конденсации моносахарида (свободного или в составе полисахарида) с гидроксильной группой другого соединения, которым может быть любой моносахарид или вещество неуглеводной природы (агликон), например, метанол, глицерол, стерол, фенол.

 

Дисахариды часто присутствуют в пище

Дисахариды – это углеводы, которые при гидролизе дают две одинаковые или различные молекулы моносахарида и связаны друг с другом гликозидной связью..

Сахароза – пищевой сахар, в которой остатки α-глюкозы и β-фруктозы связаны α1,2-гликозидной связью. Присутствует в большинстве фруктов, в ягодах и в некоторых овощах, в наибольшем количестве содержится в сахарной свекле и сахарном тростнике, в моркови, ананасах, сорго.

Мальтоза – промежуточный продукт гидролиза крахмала и гликогена, в ней два остатка α-глюкозы связаны α1,4-гликозидной связью, содержится в солоде, проростках злаков.

Строение мальтозы и изомальтозы

Строение сахарозы

Лактоза – молочный сахар, остаток β-галактозы связан с α- или β-глюкозой β1,4-гликозидной связью. В некоторых ситуациях (например, беременность) может появляться в моче.

Целлобиоза – промежуточный продукт гидролиза целлюлозы в кишечнике, в котором остатки β-глюкозы связаны β1,4-гликозидной связью. Здоровая микрофлора кишечника способна гидролизовать часть поступающей сюда целлюлозы до свободной глюкозы, которая либо потребляется самими микроорганизмами, либо всасывается в кровь.

Строение лактозы и целлобиозы

У полисахаридов структурная и резервная функция

Выделяют гомополисахариды, состоящие из одинаковых остатков моносахаров (крахмал, гликоген, целлюлоза) и гетерополисахариды (гиалуроновая кислота, хондроитинсульфаты), включающие разные моносахара.

Гомополисахариды

Крахмал – гомополимер α-D-глюкозы. Находится в злаках, бобовых, картофеле и некоторых других овощах. Синтезировать крахмал способны почти все растения.

Двумя основными компонентами крахмала являются амилоза (15-20%) и амилопектин (80-85%). Амилоза представляет собой неразветвленную цепь с молекулярной массой от 5 до 500 кДа, в которой остатки глюкозы соединены исключительно α-1,4-гликозидными связями. Амилопектин содержит α-1,4- и α-1,6-гликозидные связи, имеет массу не менее 1 млн Да и является разветвленной молекулой, причем ветвление происходит за счет присоединения небольших глюкозных цепочек к основной цепи посредством α-1,6-гликозидных связей. Каждая ветвь имеет длину 24-30 остатков глюкозы, веточки возникают примерно через 14-16 остатков глюкозы в цепочке.

Общее строение крахмала и гликогена

Гликоген – резервный полисахарид животных, находится в цитоплазме многих типов клеток, но в наибольшей мере в гепатоцитах и миоцитах. Структурно он схож с амилопектином, но, во-первых, длина веточек меньше – 11-18 остатков глюкозы, и во-вторых, он более разветвлен – через каждые 8-10 остатков. За счет этих особенностей гликоген более компактно уложен, что немаловажно для животной клетки.

Целлюлоза состоит из остатков β-глюкозы, единственной связью в ней является β-1,4-гликозидная связь. Она является наиболее распространенным органическим соединением биосферы, около половины всего углерода Земли находится в ее составе. В отличие от предыдущих полисахаридов целлюлоза является внеклеточной молекулой, имеет волокнистую структуру и абсолютно нерастворима в воде..

Строение целлюлозы

Гетерополисахариды

Большинство гетерополисахаридов характеризуется наличием повторяющихся дисахаридных остатков. Эти дисахариды включают в себя уроновую кислоту и аминосахар. Дублируясь, они образуют олиго- и полисахаридные цепи – гликаны. В биохимии используются синонимы – кислые гетерополисахариды (так как имеют много кислотных групп), гликозаминогликаны (производные глюкозы, содержат аминогруппы).

Гликозаминогликаны входят в состав протеогликанов (мукополисахаридов) – сложных белков, функцией которых является заполнение межклеточного пространства и удержание здесь воды, что обеспечивает тургор тканей и эластичность хрящей, также они выступают как смазочный и структурный компонент суставов, хрящей, кожи. В частности, гиалуроновая кислота находится в стекловидном теле глаза, в синовиальной жидкости, в межклеточном пространстве.

Основными представителями гетерополисахаридов (гликозаминогликанов) являются гиалуроновая кислота, хондроитинсульфаты, кератансульфаты и дерматансульфаты, гепарин.

Строение гиалуроновой и хондроитинсерной кислот

Использование углеводов

Экспериментальная биология

Для хроматографии используются декстраны – резервный полисахарид дрожжей и бактерий, состоящий из остатков α-глюкозы. В декстранах основным типом связи является α-1,6-гликозидная, а в местах ветвления – α1,2, α1,3, α1,4-гликозидные связи.

Лабораторная диагностика

Полисахарид фруктозы инулин (полисахарид фруктозы, связанной α1,2-гликозидными связями), содержащийся в корнях георгинов, артишоков, одуванчиков, является легко растворимым соединением. В медицинской практике используется в геморенальных пробах для определения очистительной способности почек – клиренса.

Клиническая медицина

· декстраны используются как компонент кровезаменителей, например, в виде вязкого раствора на 0,9% NaCl – реополиглюкина,

· применение в кардиологии нашли входящие в состав наперстянки сердечные гликозиды, в качестве агликона они содержат стероиды.

· гепарин в качестве антикоагулянта применяется при сосудистых нарушениях,

· при заболеваниях позвоночника и суставов широко используются препараты, содержащие гиалуроновую кислоту, хондроитинсульфат и глюкозамины,

· при нарушении функции кишечника используются кристаллическая целлюлоза, лактулоза, хитин (полимер β-1,4-N-ацетилглюкозамина) как стимуляторы перистальтики. Целлюлоза и хитин также используются и в качестве адсорбента,

· инфекционные заболевания лечатся гликозидными антибактериальными средствами, например, стрептомицин, эритромицин, влияющими на синтез белка

Углеводы легко усваиваются

Потребность в углеводах взрослого организма составляет 350-400 г в сутки, при этом целлюлозы и других пищевых волокон должно быть не менее 30-40 г.

С пищей в основном поступают крахмал, гликоген, целлюлоза, сахароза, лактоза, мальтоза, глюкоза и фруктоза, рибоза.

Ротовая полость

Со слюной сюда поступает кальций-содержащий фермент α-амилаза. Оптимум ее рН 7,1-7,2, активируется ионами Cl. Являясь эндоамилазой, она беспорядочно расщепляет внутренние α1,4-гликозидные связи и не влияет на другие типы связей.

В ротовой полости крахмал и гликоген способны расщепляться α-амилазой до декстринов – разветвленных (с α1,4- и α1,6-связями) и неразветвленных (с α1,4-связями) олигосахаридов. Некоторая часть декстринов может расщепляться до мальтозы и изомальтозы, но эти дисахариды ничем не гидролизуются.

Желудок

Из-за низкой рН амилаза инактивируется, хотя некоторое время расщепление углеводов продолжается внутри пищевого комка.

Кишечник

В полости тонкого кишечника работает панкреатическая α-амилаза, гидролизующая в крахмале и гликогене внутренние α1,4-связи с образованием мальтозы, мальтотриозы и декстринов.

Дорогие студенты, доктора и коллеги.
Что касается переваривания гомополисахаридов (крахмала, гликогена) в ЖКТ...
В моих лекциях (pdf -формат) написано о трех ферментах, выделяемых с панкреатическим соком: α-амилаза, олиго-α-1,6-глюкозидаза, изомальтаза.
ОДНАКО, при перепроверке обнаружилось, что ни в одной попавшейся мне (ноябрь 2019г) публикации в англоязычном инете нет упоминания о панкреатических олиго-α-1,6-глюкозидазе и изомальтазе. В то же время в рунете такие упоминания встречаются регулярно, хотя и с расхождением - то ли это панкреатические ферменты, то ли находятся на стенке кишечника.
Таким образом, налицо недостаточно подтвержденные данные или перепутанные или вообще ошибочные. Поэтому пока я убираю с сайта упоминание о данных ферментах, и постараюсь уточнить информацию.

Кроме полостного, имеется еще и пристеночное пищеварение, которое осуществляют:

· сахаразо-изомальтазный комплекс (рабочее название сахараза) – в тощей кишке гидролизует α1,2-, α1,4-, α1,6-гликозидные связи, расщепляет сахарозу, мальтозу, мальтотриозу, изомальтозу,

· β-гликозидазный комплекс (рабочее название лактаза) – гидролизует β1,4-гликозидные связи в лактозе между галактозой и глюкозой. У детей активность лактазы очень высока уже до рождения и сохраняется на высоком уровне до 5-7 лет, после чего снижается,

· гликоамилазный комплекс – находится в нижних отделах тонкого кишечника, расщепляет α1,4-гликозидные связи и отщепляет концевые остатки глюкозы в олигосахаридах с восстанавливающего конца.

Мальабсорбция фруктозы

Причина

Первичная или вторичная (энтериты, целиакия) недостаточность транспортного белка ГлюТ-5 для фруктозы на апикальной мембране клеток тонкого кишечника.

Патогенез

Накопление фруктозы в просвете кишечника приводит к осмотическому эффекту и задержке воды. Кроме этого, фруктоза активно потребляется микрофлорой толстого кишечника и метаболизирует с образованием коротких органических кислот (масляная, молочная) и газов.

В результате указанных процессов симптомами являются дисбактериоз, диарея, тошнота, рвота, метеоризм, вспучивание живота, его спазмы и боли.

Лечение

Пока не разработано конкретных методов лечения, однако диета со снижением содержания фруктозы и/или с увеличенным соотношением глюкоза/фруктоза облегчают симптоматику и способствуют нормализации пищеварения.

 

Для переноса моносахаридов через мембраны требуются белки-транспортеры

При использовании углеводов, как впрочем и других веществ, перед организмом стоит две задачи – всасывание из кишечника в кровь и транспорт из крови в клетки тканей. В любом случае необходимо преодолевать мембрану.

Всасывание в кишечнике

После переваривания крахмала и гликогена, после расщепления дисахаридов в полости кишечника накапливается глюкоза и другие моносахариды, которые должны попасть в кровь. Для этого им необходимо преодолеть, как минимум, апикальную мембрану энтероцита и его базальную мембрану.

Вторично-активный транспорт

По механизму вторичного активного транспорта из просвета кишечника происходит всасывание глюкозы и галактозы. Такой механизм означает, что затрата энергии при переносе сахаров происходит, но тратится она не непосредственно на транспорт молекулы, а на создание градиента концентрации другого вещества. В случае моносахаридов таким веществом является ион натрия.

Аналогичный механизм транспорта глюкозы присутствует в эпителии канальцев почек, который реабсорбирует ее из первичной мочи.
Только наличие активного транспорта позволяет перенести из внешней среды внутрь клеток практически всю глюкозу.

Фермент Na ++ -АТФаза постоянно, в обмен на калий, выкачивает ионы натрия из клетки, именно этот транспорт требует затрат энергии. В просвете кишечника содержание натрия относительно высоко и он связывается со специфическим мембранным белком, имеющим два центра связывания: один для натрия, другой для моносахарида. Примечательно то, что моносахарид связывается с белком только после того, как с ним свяжется натрий. Белок-транспортер свободно мигрирует в толще мембраны. При контакте белка с цитоплазмой натрий быстро отделяется от него по градиенту концентрации и сразу отделяется моносахарид. Результатом является накопление моносахарида в клетке, а ионы натрия выкачиваются Na++-АТФазой.

Выход глюкозы из клетки в межклеточное пространство и далее кровь происходит благодаря облегченной диффузии.

Вторично-активный транспорт глюкозы и галактозы через мембраны энтероцитов

Пассивный транспорт

В отличие от глюкозы и галактозы, фруктоза и другие моносахара всегда транспортируются белками-транспортерами, не зависящими от градиента натрия, т.е. облегченной диффузией. Так, на апикальной мембране энтероцитов находится транспортный белок ГлюТ-5, через который фруктоза диффундирует в клетку.

Для глюкозы вторично-активный транспорт используется при ее низких концентрациях в кишечнике. Если концентрация глюкозы в просвете кишечника велика, то она также может транспортироваться в клетку путем облегченной диффузии при участии белка ГлюТ-5.

Скорость всасывания моносахаридов из просвета кишечника в эпителиоцит не одинакова. Так, если скорость всасывания глюкозы принять за 100%, то относительная скорость переноса галактозы составит 110%, фруктозы – 43%, маннозы – 19%.

Превращение моносахаров

Цель этого процеса – создание только одного субстрата для реакций метаболизма, а именно α-D-глюкозы, что позволяет сэкономить ресурсы, не образовывать множество ферментов для каждого вида моносахарида. Реакции образования свободной глюкозы протекают в эпителии кишечника и, в основном, в гепатоцитах.

У детей некоторое время после рождения, даже при гипогликемии, в крови отмечается относительный избыток других моносахаридов, например, фруктозы и галактозы, что обычно связано с функциональной незрелостью печени.

Превращение галактозы

Галактоза сначала подвергается фосфорилированию по 1-му атому углерода. Отличительной особенностью является превращение в глюкозу не напрямую, а через синтез УДФ-галактозы из галактозо-1-фосфата. Источником УМФ является УДФ-глюкоза, имеющаяся в клетке. Образованная УДФ-галактоза впоследствии изомеризуется в УДФ-глюкозу и далее ее судьба различна.

Она может:

· участвовать в реакции переноса УМФ на галактозо-1-фосфат,

· превращаться в свободную глюкозу и выходить в кровь,

· отправляться на синтез гликогена.

Превращение галактозы в глюкозу
(обратимость обеих уридил-трансферазных реакций не показана)

Биохимическое усложнение вроде бы простой реакции эпимеризации вызвано, видимо, синтезом УДФ-галактозы из глюкозы в молочной железе для получения лактозы при образовании молока. Также галактоза используется при синтезе соответствующих гексозаминов в гетерополисахаридах.

Превращение фруктозы

В целом переход фруктозы в глюкозу осуществляется по двум направлениям. Сначала происходит активация фруктозы посредством фосфорилирования либо 6-го атома углерода при участии гексокиназы, либо 1-го атома при участии фруктокиназы.

В печени имеются оба фермента, однако гексокиназа имеет гораздо более низкое сродство к фруктозе и этот путь превращения слабо выражен. Образованный ею фруктозо-6-фосфат далее изомеризуется и глюкозо-6-фосфатаза отщепляет уже ненужный фосфат с получением глюкозы.

Если работает фруктокиназа, то образуется фруктозо-1-фосфат, под действием соответствующей альдолазы он превращается в глицеральдегид и диоксиацетонфосфат. Глицеральдегид фосфорилируется до глицеральдегидфосфата и вместе с диоксиацетонфосфатом они в дальнейших реакциях либо используются в гликолизе, либо в реакциях глюконеогенеза превращаются в фруктозо-6-фосфат и далее в глюкозу.

Особенностью мышц является отсутствие фруктокиназы, поэтому фруктоза в них превращается сразу в фруктозо-6-фосфат и поступает в реакции гликолиза или синтеза гликогена.

Пути метаболизма фруктозы и ее превращение в глюкозу

Особенностью метаболизма фруктозы является то, что фермент фруктокиназа является инсулин-независимым. В результате превращение фруктозы в пировиноградную кислоту и ацетил-SКоА происходит быстрее, чем для глюкозы. Это объясняется "игнорированием" лимитирующей реакции метаболизма глюкозы, катализируемой фосфофруктокиназой. Дальнейший метаболизм ацетил-SКоА в данном случае может привести к избыточному образованию жирных кислот и триацилглицеролов.

Активация глюкозы

После перемещения через мембраны глюкоза в цитозоле немедленно фосфорилируется ферментом гексокиназой, в связи с чем фермент образно называют " ловушка глюкозы ". Фосфорилирование глюкозы решает несколько задач:

· фосфатный эфир глюкозы не в состоянии выйти из клетки, так как молекула отрицательно заряжена и отталкивается от фосфолипидной поверхности мембраны,

· наличие заряженной группы обеспечивает правильную ориентацию молекулы в активном центре фермента,

· уменьшается концентрация свободной (нефосфорилированной) глюкозы в клетке, что способствует диффузии новых ее молекул из крови.

Дефосфорилирование глюкозы осуществляется глюкозо-6-фосфатазой. Этот фермент есть только в печени и почках. В эпителии канальцев почек работа фермента связана с реабсорбцией глюкозы. В гепатоцитах фермент необходим, когда печень поддерживает концентрацию глюкозы в крови при гипогликемии.

Реакции фосфорилирования и дефосфорилирования глюкозы

Кроме внешней среды (крови) источником глюкозы для клеток являются запасы гликогена, который используется как внутриклеточный резерв.

Вместе с этим, гепатоциты и канальцевый эпителий почек обладают способностью синтезировать глюкозу из неуглеводных компонентов (глюконеогенез). Но в данном случае глюкоза уходит из этих клеток в кровь и используется другими клетками.

Особенности глюкокиназы

Существуют принципиальные отличия метаболизма глюкозы в печени от других тканей. Это объясняется рядом причин и, в частности, наличием в тканях различных изоферментов гексокиназы. Для печени характерен особый изофермент гексокиназа IV, получивший собственное название – глюкокиназа. Отличиями этого фермента от гексокиназ других тканей являются:

· низкое сродство к глюкозе (в 1000 раз меньше), что ведет к захвату глюкозы печенью только при ее высокой концентрации в крови (после еды),

· продукт реакции глюкозо-6-фосфат не ингибирует фермент, в то время как в других тканях гексокиназа чувствительна к такому влиянию. Это позволяет гепатоциту в единицу времени захватывать и фосфорилировать глюкозы больше, чем он может сразу же утилизовать,

· чувствительность к действию инсулина – фермент активируется этим гормоном.

Благодаря таким отличиям гепатоцит может эффективно захватывать глюкозу после еды, накапливать и впоследствии метаболизировать ее в любом направлении:

· синтез гликогена (гликогеногенез),

· получение рибозо-5-фосфата (пентозофосфатный путь),

· окисление до ацетил-SКоА и синтез из него жирных кислот и холестерина.

· Гликоген - это легкоиспользуемый резерв энергии

· Мобилизация гликогена (гликогенолиз)

· Резервы гликогена используются по-разному в зависимости от функциональных особенностей клетки.

· Гликоген печени расщепляется при снижении концентрации глюкозы в крови, прежде всего между приемами пищи. Через 12-18 часов голодания запасы гликогена в печени полностью истощаются.

· В мышцах количество гликогена снижается обычно только во время физической нагрузки – длительной и/или напряженной. Гликоген здесь используется для обеспечения глюкозой работы самих миоцитов. Таким образом, мышцы, как впрочем и остальные органы, используют гликоген только для собственных нужд.

· Мобилизация (распад) гликогена или гликогенолиз активируется при недостатке свободной глюкозы в клетке, а значит и в крови (голодание, мышечная работа). При этом уровень глюкозы крови "целенаправленно" поддерживает только печень, в которой имеется глюкозо-6-фосфатаза, гидролизующая фосфатный эфир глюкозы. Образуемая в гепатоците свободная глюкоза выходит через плазматическую мембрану в кровь.

· В гликогенолизе непосредственно участвуют три фермента:

· 1. Фосфорилаза гликогена (кофермент пиридоксальфосфат) – расщепляет α-1,4-гликозидные связи с образованием глюкозо-1-фосфата. Фермент работает до тех пор, пока до точки ветвления (α1,6-связи) не останется 4 остатка глюкозы.

·

· Роль фосфорилазы при мобилизации гликогена

· 2. α(1,4)-α(1,4)-Глюкантрансфераза – фермент, переносящий фрагмент из трех остатков глюкозы на другую цепь с образованием новой α1,4-гликозидной связи. При этом на прежнем месте остается один остаток глюкозы и "открытая" доступная α1,6-гликозидная связь.

· 3. Амило-α1,6-глюкозидаза, (" деветвящий " фермент) – гидролизует α1,6-гликозидную связь с высвобождением свободной (нефосфорилированной) глюкозы. В результате образуется цепь без ветвлений, вновь служащая субстратом для фосфорилазы.

·

· Роль ферментов в расщеплении гликогена

· Синтез гликогена

· Гликоген способен синтезироваться почти во всех тканях, но наибольшие запасы гликогена находятся в печени и скелетных мышцах. Накопление гликогена в мышцах отмечается в период восстановления после нагрузки, особенно при приеме богатой углеводами пищи. В печени синтез гликогена происходит только после еды, при гипергликемии. Это объясняется особенностями печеночной гексокиназы (глюкокиназы), которая имеет низкое сродство к глюкозе и может работать только при ее высоких концентрациях, при нормальных концентрациях глюкозы в крови ее захват печенью не производится.

· Непосредственно синтез гликогена осуществляют следующие ферменты:

· 1. Фосфоглюкомутаза – превращает глюкозо-6-фосфат в глюкозо-1-фосфат;

· 2. Глюкозо-1-фосфат-уридилтрансфераза – фермент, осуществляющий ключевую реакцию синтеза. Необратимость этой реакции обеспечивается гидролизом образующегося дифосфата;

·

· Реакции синтеза УДФ-глюкозы

· 3. Гликогенсинтаза – образует α1,4-гликозидные связи и удлиняет гликогеновую цепочку, присоединяя активированный С1 УДФ-глюкозы к С4 концевого остатка гликогена;

·

· Химизм реакции гликогенсинтазы

· 4. Амило-α1,4-α1,6-гликозилтрансфераза,"гликоген-ветвящий" фермент – переносит фрагмент с минимальной длиной в 6 остатков глюкозы на соседнюю цепь с образованием α1,6-гликозидной связи.

·

· Роль гликогенсинтазы и гликозилтрансферазы в синтезе гликогена

· 0

 

Синтез и распад гликогена реципрокны

Метаболизм гликогена в печени, мышцах и других клетках регулируется несколькими гормонами, одни из которых активируют синтез гликогена, а другие – распад гликогена. При этом в одной клетке не могут идти одновременно синтез и распад гликогена – это противоположные процессы с совершенно с разными задачами. Синтез и распад исключают друг друга или, по-другому, они реципрокны.

Активность ключевых ферментов метаболизма гликогена гликогенфосфорилазы и гликогенсинтазы изменяется в зависимости наличия в составе фермента фосфорной кислоты – они активны либо в фосфорилированной, либо в дефосфорилированной форме.

Присоединение фосфатов к ферменту производят протеинкиназы, источником фосфата является АТФ:

· фосфорилаза гликогена активируется после присоединения фосфатной группы,

· синтаза гликогена после присоединения фосфата инактивируется.

Скорость фосфорилирования указанных ферментов повышается после воздействия на клетку адреналина, глюкагона и некоторых других гормонов. В результате адреналин и глюкагон вызывают гликогенолиз, активируя фосфорилазу гликогена.

Например,

· во время мышечной работы адреналин вызывает фосфорилирование внутримышечных ферментов обмена гликогена. В результате фосфорилаза гликогена активируется, синтаза инактивируется. В мышце происходит распад гликогена, образуется глюкоза для обеспечения энергией мышечного сокращения.

· при голодании в ответ на снижение глюкозы крови из поджелудочной железы секретируется глюкагон. Он воздействует на гепатоциты и вызывает фосфорилирование ферментов обмена гликогена, что приводит к гликогенолизу и повышению глюкозы в крови.

Изменение активности ферментов обмена гликогена в зависимости от условий

Гликогенозы

Синдром гликогеноза возникает в результате дефекта фермента синтеза или мобилизации гликогена, что приводит к накоплению или изменению структуры гликогена в разных тканях, чаще в печени и мышцах. Следует отметить, что при гликогенозах количество гликогена не всегда изменено, изменения могут быть только в структуре его молекулы.

Всего известно 12 типов гликогенозов. По патогенетическому признаку гликогенозы делят:

· печеночные – 0, I, III, IV, VI, VIII, IX, Х, ХI типов,

· мышечные – V и VII типов,

· смешанные – II типа.

Печеночные гликогенозы

Самый частый гликогеноз I типа или болезнь фон Гирке (частота 1: 50000-100000 новорожденных) обусловлен аутосомно-рецессивным дефектом глюкозо-6-фосфатазы. Из-за того, что этот фермент есть только в печени и почках, преимущественно страдают эти органы, и болезнь носит еще одно название – гепаторенальный гликогеноз. Даже у новорожденных детей наблюдаются гепатомегалия и нефромегалия, обусловленные накоплением гликогена не только в цитоплазме, но и в ядрах клеток. Кроме этого, активируется синтез липидов с возникновением стеатоза печени. Так как фермент необходим для дефосфорилирования глюкозо-6-фосфата с последующим выходом глюкозы в кровь, у больных отмечается гипогликемия и, как следствие, ацетонемия, метаболический ацидоз, ацетонурия.

Гликогеноз III типа или болезнь Форбса-Кори или лимит-декстриноз – это аутосомно-рецессивный дефект амило-α1,6-глюкозидазы, "деветвящего" фермента, гидролизующего α1,6-гликозидную связь. Болезнь имеет более доброкачественное течение, и частота ее составляет примерно 25% от всех гликогенозов. Для больных характерна гепатомегалия, умеренная задержка физического развития, в подростковом возрасте возможна небольшая миопатия.

При гликогенозе IV типа (болезнь Андерсена, 1% всех гликогенозов), связанного с дефектом ветвящего фермента, образуется гликоген с малым количеством ветвлений, что резко уменьшает скорость гликогенолиза.

Гликогеноз VI типа (болезнь Херса, 25% всех гликогенозов), связан с дефицитом печеночной фосфорилазы гликогена. При этом отсутствует мобилизация гликогена, развивается гепатомегалия и гипогликемия.

Мышечные гликогенозы

Для этой группы гликогенозов характерны изменения ферментов мышечной ткани. Это приводит к нарушению энергообеспечения мышц при физической нагрузке, к болям в мышцах, судорогам.

Гликогеноз V типа (болезнь Мак-Ардля) – отсутствие мышечной фосфорилазы. При тяжелой мышечной нагрузке возникают судороги, миоглобинурия, хотя легкая работа не вызывает каких-либо проблем.

Схематичное расположение дефектных ферментов при различных гликогенозах

Смешанные гликогенозы

Эти заболевания касаются и печени, и мышц, и других органов.

Гликогеноз II типа (болезнь Помпе, 10% всех гликогенозов) – поражаются все гликогенсодержащие клетки из-за отсутствия лизосомальной (кислой) α-1,4-глюкозидазы, поэтому данная болезнь относится к лизосомным болезням накопления. Происходит накопление гликогена в лизосомах и в цитоплазме. Заболевание составляет почти 10% всех гликогенозов и является наиболее злокачественным. Больные при отсутствии лечения умирают в раннем возрасте из-за кардиомегалии и тяжелой сердечной недостаточности.

Агликогенозы

Агликогенозы – состояния, связанные с отсутствием гликогена. В качестве примера агликогеноза можно привести наследственный аутосомно-рецессивный дефицит гликоген-синтазы. Симптомами является резкая гипогликемия натощак, особенно утром, появляется рвота, судороги, потеря сознания. В результате гипогликемии наблюдается задержка психомоторного развития, умственная отсталость. Болезнь несмертельна при адекватном лечении (частое кормление), хотя и опасна.

 

Глюкоза крайне важна для энергетики клеток

Гликолиз

Анаэробное превращение глюкозы локализуется в цитозоле и включает два этапа из 11 ферментативных реакций.

Первый этап гликолиза

Первый этап гликолиза – подготовительный, здесь происходит затрата энергии АТФ, активация глюкозы и образование из нее триозофосфатов.

Первая реакция гликолиза сводится к превращению глюкозы в реакционно-способное соединение за счет фосфорилирования 6-го, не включенного в кольцо, атома углерода. Эта реакция является первой в любом превращении глюкозы, катализируется гексокиназой.

Вторая реакция необходима для выведения еще одного атома углерода из кольца для его последующего фосфорилирования (фермент глюкозофосфат-изомераза). В результате образуется фруктозо-6-фосфат.

Третья реакция – фермент фосфофруктокиназа фосфорилирует фруктозо-6-фосфат с образованием почти симметричной молекулы фруктозо-1,6-дифосфата. Эта реакция является главной в регуляции скорости гликолиза.

В четвертой реакции фруктозо-1,6-дифосфат разрезается пополам фруктозо-1,6-дифосфат- альдолазой с образованием двух фосфорилированных триоз-изомеров – альдозы глицеральдегида (ГАФ) и кетозы диоксиацетона (ДАФ).

Пятая реакция подготовительного этапа – переход глицеральдегидфосфата и диоксиацетонфосфата друг в друга при участии триозофосфатизомеразы. Равновесие реакции сдвинуто в пользу диоксиацетонфосфата, его доля составляет 97%, доля глицеральдегидфосфата – 3%. Эта реакция, при всей ее простоте, определяет дальнейшую судьбу глюкозы:

· при нехватке энергии в клетке и активации окисления глюкозы диоксиацетонфосфат превращается в глицеральдегидфосфат, который далее окисляется на втором этапе гликолиза,

· при достаточном количестве АТФ, наоборот, глицеральдегидфосфат изомеризуется в диоксиацетонфосфат, и последний отправляется на синтез жиров.

 

Второй этап гликолиза

Второй этап гликолиза – это освобождение энергии, содержащейся в глицеральдегидфосфате, и запасание ее в форме АТФ.

Шестая реакция гликолиза (фермент глицеральдегидфосфат-дегидрогеназа) – окисление глицеральдегидфосфата и присоединение к нем


Поделиться с друзьями:

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.144 с.