Опишите правило единообразия гибридов первого поколеня — КиберПедия 

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Опишите правило единообразия гибридов первого поколеня

2020-06-05 297
Опишите правило единообразия гибридов первого поколеня 0.00 из 5.00 0 оценок
Заказать работу

Вопрос № 5

 Опишите основные этапы развития селекции.

Селекция растений. Направления и этапы

 

Селекция — это наука о создании новых сортов растений, пород животных и штаммов микроорганизмов, соответствующих потребностям человека.

Возникновение селекции как науки связано с необходимостью решения такой глобальной, жизненно важной проблемы всего человечества, как продовольственная проблема. Для ее решения нужно не только постоянно совершенствовать традиционные методы ведения сельского хозяйства (интенсивная обработка почвы, внесение оптимальных доз минеральных и органических удобрений, осуществление комплекса мер по сохранению и повышению плодородия почв и др.), но и использовать новые научные методы производства продуктов питания в условиях интенсивного земледелия.

Селекция высокопродуктивных форм живых организмов является самым эффективным и наиболее экономически выгодным способом повышения продуктивности сельского хозяйства. Доказано, что вклад селекции в повышение в два раза урожайности основных сельскохозяйственных культур, достигнутое за последнюю четверть века в развитых странах, составляет около 50%. Так называемую «зеленую революцию» в земледелии Мексики, Индии и ряда других стран совершило внедрение низкорослых (с высотой стебля 100—110 см), полукарликовых (80—100 см) и карликовых (60—80 см) сортов риса, пшеницы и др. Они характеризуются не только высокой устойчивостью к полеганию, но и высокой продуктивностью колоса, главным образом за счет повышенного количества в нем зерновок. Такие сорта обеспечивают урожайность выше 60 ц/га. Производство пшеницы в Мексике и Индии с 1950 по 1970 г. возросло более чем в 8 раз; посевная площадь увеличилась вдвое, а урожай — вчетверо. Подобные сорта пшеницы созданы и в России (например, Донская полукарликовая и Мироновская низкорослая).

Например, для выпечки высококачественного хлеба с эластичным мякишем и хрустящей корочкой необходимы сильные (стекловидные) сорта мягкой пшеницы, с большим содержанием белка, с упругой клейковиной, которой должно содержаться не менее 30%. Только в этом случае из 100 г зерна можно получить батон объемом 1 000 см3, так как эластичная клейковина удерживает углекислый газ, выделяющийся при брожении. Для изготовления высших сортов печенья нужны хорошие мучнистые (слабые) сорта мягкой пшеницы, а макаронные изделия (рожки, вермишель, лапша и т. д.) вырабатываются из твердой пшеницы.

Сорт, порода, штамм — искусственно созданные человеком популяции организмов с определенными наследственными признаками: морфологическими, физиологическими и высокой продуктивностью. Проявление фенотипа зависит от условий среды, поэтому в селекционной работе важен не только генотип организма, но и условия его содержания (климатические факторы, уход). Все особи внутри породы, сорта и штамма имеют идентичные, наследственно закрепленные морфологические, физиолого-био-химические и хозяйственные признаки и свойства, а также однотипную реакцию на действие факторов внешней среды.

С целью изучения многообразия и географического распространения культурных растений Н. И. Вавилов с 1924 г. и до конца 30-х гг. организовал 180 экспедиций по самым труднодоступным и зачастую опасным районам земного шара. В результате этих экспедиций Н. И. Вавилов изучил мировые растительные ресурсы и установил, что наибольшее разнообразие форм вида сосредоточено в тех районах, где этот вид возник. Кроме того, была собрана уникальная, самая крупная в мире коллекция культурных растений (к 1940 г. коллекция включала около 300 тыс, образцов), которые ежегодно размножаются в коллекциях Всероссийского института растениеводства имени Н, И. Вавилова (ВИР) и широко используются селекционерами как исходный материал для создания новых сортов зерновых, плодовых, овощных, технических, лекарственных и других культур.

В 1994 г. мировая коллекция ВИР насчитывала 562 267 образцов, представляющих 2 260 видов растений 304 родов, и являлась крупнейшей в мире. К коллекции ВИР обращаются сегодня более 700 научных учреждений зарубежных стран, а в России на ее основе выведено около 60% районированных сортов и гибридов, т. с. 1000 сортов различных сельскохозяйственных культур, занимающих площадь около 60 млн. га. Из них почти 400 сортов выведено сотрудниками ВИР и его опытных станций.

Н.И. Вавилов установил, что для успешной селекции необходимо учитывать следующее:

а) исходное разнообразие признаков организмов — генетическую гетерогенность вида;

б) законы наследственности и наследственной изменчивости;

в) роль среды в развитии признака;

г) формы искусственного отбора для их выявления и закрепления.

Основой селекционной работы является искусственный отбор.

Искусственный отбор — отбор человеком особей с нужными хозяйственными признаками для последующего разведения. Учитывая индивидуальные признаки организма, человек отбирает особей с полезными признаками и выбраковывает остальных.

Виды отбора. Первым этапом селекции явилось одомашнивание — процесс превращения диких животных и растений в культурные формы.

На первых этапах одомашнивания человек использовал бессознательный отбор — отбор без определенно поставленной цели. Сознательный отбор — это методический отбор, направленный на изменение ряда признаков с целью получения особей с необходимыми качествами.

Основные направления селекции

1) высокая урожайность сортов растений, плодовитость и продуктивность пород животных;
2) качество продукции (например, вкус, внешний вид, лежкость плодов и овощей, химический состав зерна — содержание белка, клейковины, незаменимых аминокислот и т. д.);
3) физиологические свойства (скороспелость, засухоустойчивость, устойчивость к болезням, вредителям и неблагоприятным климатическим условиям);
4) интенсивный путь развития (у растений — отзывчивость на удобрения, полив, а у животных — «оплата» корма и т. п.).

Этапы селекции

1. Подбор родительских пар по хозяйственно-ценным признакам, месту их происхождения.

2. Гибридизация — получение гибридов путем близкородственного скрещивания (инбридинг) или отдаленной гибридизации (аутбри-динг). В результате гибридизации может наблюдаться эффект гетерозиса, когда гибридное поколение обладает более высокой плодовитостью и жизнеспособностью. Эффект гетерозиса отмечается только у гибридов 1-го поколения, полученного при скрещивании двух высокопродуктивных чистых линий. В следующих поколениях эффект пропадает, так как имеет место расщепление признаков по законам Менделя.

3. Отбор массовый или индивидуальный по хозяйственным признакам.

4. Метод испытания производителей по потомству.

 Вопрос № 16

Вопрос № 31

Вопрос №44

Вопрос № 73

 Опишите геномные мутации.

Геномные мутации

 

Мутации, происходящие вследствие изменения количества хромосом, составляют группу количественных хромосомных мутаций. Они называются также геномными, поскольку представляют собой нарушение геномного числа хромосом. В основе этого нарушения лежат механизмы нерасхождения хромосом в момент деления клеток, главным образом в мейозе. Изменение числа хромосом осуществляется в двух направлениях: в сторону увеличения или уменьшения их количества, кратного гаплоидному (полиплоидия), и в сторону потери или включении отдельных хромосом или их пар в клеточном наборе (гетероплоидия). Полиплоидия в свою очередь подразделяется на автополиплоидию (увеличение числа хромосом за счет умножения геномов одного вида) и аллополиплоидию (увеличение числа хромосом за счет слияния геномов разных видов).

Геномные мутации

Робертсоновские перестройки – слияние и разделение хромосом в области центромеры. Названы они по имени В. Робертсона, который предложил свою гипотезу механизма таких мутаций. Слияния хромосом («робертсоновские транслокации») заключается в соединении двух негомологичных хромосом в одну. Под разделением хромосом понимают разрыв одной хромосомы на две. Слияния и разделения изменяют число хромосом в наборе, но не влияют на количества наследственного материала клетки.

Считается, что слияния хромосом происходят чаще, чем их разделение. Практически для любой большой группы растений и животных можно найти данные о хромосомных слияниях. Увеличение числа хромосом в результате их разделения в некоторых случаях также хорошо установлено, например, для ящериц Anolis. Число хромосом в гаплоидном наборе большинства растений и животных колеблется от 6 до 20, но общий размах изменчивости простирается от 1 до нескольких сотен. Число хромосом в наборе может быть различным даже для видов одного рода. Так, например, хромосомное число у дрозофил может принимать любое значение от 3 до 6.

Автополиплоидия

Или повторение в клетке одного и того же хромосомного набора. Эта разновидность довольно широко представлена в природе у протистов, грибов и растений. Плоидность макронуклеуса инфузорий может достигать нескольких сотен. У животных встречается редко и обычно приводит к летальному исходу на ранних стадиях эмбриогенеза.

По мнению А. Мюнтцинга (1967), более половины их относятся к полипоидам. В настоящее время явление полиплоидии широко используется в селекции растений, поскольку увеличение числа хромосом в клеточном наборе нередко приводит к усилению хозяйственно полезных признаков: к увеличению размеров клеток, цветов, плодов, количества зерна, зеленой массы, содержания белка, сахара в плодах и корнеплодах, иногда к повышению устойчивости к вредным воздействиям и заболеваниям. Описана полиплоидия и у некоторых животных, таких, как аскарида, дрозофила, водяной рачок, морской еж. У позвоночных и многих беспозвоночных полиплоидия встречается редко. Она приводит обычно к гибели организма уже на ранних стадиях развития.

Первые исследования полиплоидии были проведены И.И. Герасимовым в 1898-1901 гг. Ему удалось получить тетраплоидные клетки у водоросли спирогиры путем воздействия на них парами эфира и высокими температурами. Искусственное получение полиплоидов стало возможным с 1937 г., когда А. Блекси и А. Эйвери применили для этих целей колхицин.

У культурных растений сбалансированные полиплоиды (т.е. кариотипы с четным числом гаплоидных наборов – 4n, 6n, 8n и т.п.) получают искусственным путем из-за их более крупных размеров. Несбалансированные полиплоиды (3n, 5n, 7n и т.п.) растений часто имеют пониженную фертильность вследствие нарушений мейоза. Но, тем не менее, некоторые растения-триплоиды обладают большими размерами и продуктивностью по сравнению с диплоидными и тетраплоидными.

В настоящее время внутри некоторых видов растений (пшеница, рожь, овес, картофель, хлопчатник, земляника, сахарная свекла, шелковица и др.) изучены полиплоидные ряды, включающие все формы полиплоидии – от геномного числа (гаплоиды) до разных уровней полиплоидизации. В качестве примера можно привести полиплоидный ряд пшеницы, где n=7:2n (однозернянка Triticum durum) и 6n (мягкая Triticum aestivum). Хозяйственно ценные признаки могут возникать на разных уровнях полиплоидизации, но существует так называемый оптимальный уровень ее, увеличение или снижение которого не дает положительного эффекта. У картофеля и пшеницы, например, оптимальный уровень 4n, у земляники – 8n. Для увеличения числа хромосом у этих видов не приводит к усилению полезных свойств, а в ряде случаев даже ослабляет их.

Один из путей возникновения автополиплоидов у растений – образование нередуцированных микро- и макроспор, которое может происходить под влиянием повышения или понижения температуры, действия наркотических веществ и др. В этих случаях хромосомы не конъюгируют в профазе I и могут быть включены в одно ядро в телофазе I. Далее это ядро проходит II деление и образует не четыре, а две клетки – диады. Возможно также нарушение II деление мейоза. В обоих случаях в итоге образуется нередуцированные – диплоидные пыльцевые зерна или яйцеклетки.

Полиплоиды можно получить и у некоторых животных, в частности амфибий. Если на свежеоплодотворенные яйца тритона воздействовать высокой или низкой температурой, из них иногда возникают триплоидные экземпляры. Особым гигантизмом они не отличаются они не отличаются и обычно рано погибают. Находили и триплоидных головастиков лягушек.

Аллополиплоидия

Впервые была описана советским ученым Г.Д. Карпеченко в 1927 г. Многие растения являются природными полиплоидами.

Ему удалось получить плодовитый гибрид редьки и капусты. В клетках этих растений содержится одинаковый по количеству набор хромосом (2n=18), но они не гомологичны. Капустно-редичный гибрид, имеющий 2n хромосом (n=9 – капусты + n=9 – редьки) и совмещающий признаки редьки и капусты, бесплоден, поскольку у него в связи с отсутствием парных гомологичных хромосом нарушается процесс их конъюгации в мейозе: вместо бивалентов формируются униваленты, а гаметы содержат самое различное число хромосом – от 0 до 18. При объединении двух нередуцированных гамет с 18 хромосомами получаются гибриды (рафанобрассика) с 4n хромосомами, где каждая из них имеет гомологичного партнера (2n = 18 – капусты + 2n = 18 – редьки). У гибридов мейоз протекает нормально и в ряду поколений сохраняется плодовитость. Такие гибриды носят название амфидиплоидов. При их образовании происходит как бы синтез новых видов. В 1938 г. белорусский ученый А.Р. Жебрак получил 42-, 56- и 70-хромосомные амфидиплоиды пшеницы от скрещивания однозернянки, твердой пшеницы и пшеницы Тимофеева. Б.Л. Астауров в 40-х годах получил полиплоидную форму у шелкопряда при скрещивании двух видов шелкопряда – Bombyx mori и B. mandarina.

В ряде случаев при отдаленной гибридизации могут развиться формы, существующие в природе. Это явление носит название ресинтеза. Так, в 30-х годах В.А. Рыбин синтезировал культурную сливу, скрещивая терн с алычой. Среди гибридов оказалось растение, похожее на домашнюю сливу и имеющее такое же число хромосом (2n = 48). Жебраку удалось провести ресинтез 42-хромосомной пшеницы.

Гетероплоидия, или анеуплоидия

Возникает вследствие изменения числа хромосом, не кратного гаплоидному набору. В результате не расхождение хромосом при гаметогенезе могут возникать половые клетки с лишними хромосомами, и тогда при последующем слиянии с нормальными гаплоидными гаметами они образуют зиготы 2n + 1, или трисомики, по определенной хромосоме. Если в гамете оказалось меньше на одну хромосому, то последующее оплодотворение приведет к образованию зиготы 2n – 1, или моносомика, по какой-либо из хромосом. Полисомия и моносомия могут иметь самостоятельное фенотипическое проявление вследствие изменения соотношений доз некоторых генов или нарушения генного баланса. Так, А. Брексли и Дж. Беллинг в 20-х годах показали, что создание трисомиков по каждой из 12 хромосом дурмана (Datura stramonium) приводит к появлению характерного, отличного от других типа растения. В частности, это выражалось в специфическом изменении формы семенной коробочки.

Часто, особенно у животных и человека, лишняя хромосома обусловливает депрессию развития и летальность. (например: лишняя Х-хромосома или 21-я хромосома у человека обусловливает тяжелые аномалии).

Расщепление по генам, локализованным в лишней хромосоме, подчиняется законам расщепления полиплоидов с учетом явления двойной редукции. В этом случае при скрещивании трисомика и нормального диплоида анализ ведется, как и при скрещивании триплоида и диплоида.

Гетероплоидия сопровождается значительными фенотипическими изменениями. У людей при этом обнаруживаются множественные дефекты физического и умственного развития. Описана гетероплоидия у растений (пшеница, табак, кукуруза) и некоторых домашних животных. Она используется для изучения групп сцепления, маркирования хромосом и для селекционных целей (вводя в геном реципиента определенные хромосомы, можно направленно изменять признаки и свойства растений).

У гетероплоидов также нарушен гаметогенез, но вместе с тем у них могут образовываться нормальные гаплоидные половые клетки.

Вопрос № 5

 Опишите основные этапы развития селекции.

Селекция растений. Направления и этапы

 

Селекция — это наука о создании новых сортов растений, пород животных и штаммов микроорганизмов, соответствующих потребностям человека.

Возникновение селекции как науки связано с необходимостью решения такой глобальной, жизненно важной проблемы всего человечества, как продовольственная проблема. Для ее решения нужно не только постоянно совершенствовать традиционные методы ведения сельского хозяйства (интенсивная обработка почвы, внесение оптимальных доз минеральных и органических удобрений, осуществление комплекса мер по сохранению и повышению плодородия почв и др.), но и использовать новые научные методы производства продуктов питания в условиях интенсивного земледелия.

Селекция высокопродуктивных форм живых организмов является самым эффективным и наиболее экономически выгодным способом повышения продуктивности сельского хозяйства. Доказано, что вклад селекции в повышение в два раза урожайности основных сельскохозяйственных культур, достигнутое за последнюю четверть века в развитых странах, составляет около 50%. Так называемую «зеленую революцию» в земледелии Мексики, Индии и ряда других стран совершило внедрение низкорослых (с высотой стебля 100—110 см), полукарликовых (80—100 см) и карликовых (60—80 см) сортов риса, пшеницы и др. Они характеризуются не только высокой устойчивостью к полеганию, но и высокой продуктивностью колоса, главным образом за счет повышенного количества в нем зерновок. Такие сорта обеспечивают урожайность выше 60 ц/га. Производство пшеницы в Мексике и Индии с 1950 по 1970 г. возросло более чем в 8 раз; посевная площадь увеличилась вдвое, а урожай — вчетверо. Подобные сорта пшеницы созданы и в России (например, Донская полукарликовая и Мироновская низкорослая).

Например, для выпечки высококачественного хлеба с эластичным мякишем и хрустящей корочкой необходимы сильные (стекловидные) сорта мягкой пшеницы, с большим содержанием белка, с упругой клейковиной, которой должно содержаться не менее 30%. Только в этом случае из 100 г зерна можно получить батон объемом 1 000 см3, так как эластичная клейковина удерживает углекислый газ, выделяющийся при брожении. Для изготовления высших сортов печенья нужны хорошие мучнистые (слабые) сорта мягкой пшеницы, а макаронные изделия (рожки, вермишель, лапша и т. д.) вырабатываются из твердой пшеницы.

Сорт, порода, штамм — искусственно созданные человеком популяции организмов с определенными наследственными признаками: морфологическими, физиологическими и высокой продуктивностью. Проявление фенотипа зависит от условий среды, поэтому в селекционной работе важен не только генотип организма, но и условия его содержания (климатические факторы, уход). Все особи внутри породы, сорта и штамма имеют идентичные, наследственно закрепленные морфологические, физиолого-био-химические и хозяйственные признаки и свойства, а также однотипную реакцию на действие факторов внешней среды.

С целью изучения многообразия и географического распространения культурных растений Н. И. Вавилов с 1924 г. и до конца 30-х гг. организовал 180 экспедиций по самым труднодоступным и зачастую опасным районам земного шара. В результате этих экспедиций Н. И. Вавилов изучил мировые растительные ресурсы и установил, что наибольшее разнообразие форм вида сосредоточено в тех районах, где этот вид возник. Кроме того, была собрана уникальная, самая крупная в мире коллекция культурных растений (к 1940 г. коллекция включала около 300 тыс, образцов), которые ежегодно размножаются в коллекциях Всероссийского института растениеводства имени Н, И. Вавилова (ВИР) и широко используются селекционерами как исходный материал для создания новых сортов зерновых, плодовых, овощных, технических, лекарственных и других культур.

В 1994 г. мировая коллекция ВИР насчитывала 562 267 образцов, представляющих 2 260 видов растений 304 родов, и являлась крупнейшей в мире. К коллекции ВИР обращаются сегодня более 700 научных учреждений зарубежных стран, а в России на ее основе выведено около 60% районированных сортов и гибридов, т. с. 1000 сортов различных сельскохозяйственных культур, занимающих площадь около 60 млн. га. Из них почти 400 сортов выведено сотрудниками ВИР и его опытных станций.

Н.И. Вавилов установил, что для успешной селекции необходимо учитывать следующее:

а) исходное разнообразие признаков организмов — генетическую гетерогенность вида;

б) законы наследственности и наследственной изменчивости;

в) роль среды в развитии признака;

г) формы искусственного отбора для их выявления и закрепления.

Основой селекционной работы является искусственный отбор.

Искусственный отбор — отбор человеком особей с нужными хозяйственными признаками для последующего разведения. Учитывая индивидуальные признаки организма, человек отбирает особей с полезными признаками и выбраковывает остальных.

Виды отбора. Первым этапом селекции явилось одомашнивание — процесс превращения диких животных и растений в культурные формы.

На первых этапах одомашнивания человек использовал бессознательный отбор — отбор без определенно поставленной цели. Сознательный отбор — это методический отбор, направленный на изменение ряда признаков с целью получения особей с необходимыми качествами.

Основные направления селекции

1) высокая урожайность сортов растений, плодовитость и продуктивность пород животных;
2) качество продукции (например, вкус, внешний вид, лежкость плодов и овощей, химический состав зерна — содержание белка, клейковины, незаменимых аминокислот и т. д.);
3) физиологические свойства (скороспелость, засухоустойчивость, устойчивость к болезням, вредителям и неблагоприятным климатическим условиям);
4) интенсивный путь развития (у растений — отзывчивость на удобрения, полив, а у животных — «оплата» корма и т. п.).

Этапы селекции

1. Подбор родительских пар по хозяйственно-ценным признакам, месту их происхождения.

2. Гибридизация — получение гибридов путем близкородственного скрещивания (инбридинг) или отдаленной гибридизации (аутбри-динг). В результате гибридизации может наблюдаться эффект гетерозиса, когда гибридное поколение обладает более высокой плодовитостью и жизнеспособностью. Эффект гетерозиса отмечается только у гибридов 1-го поколения, полученного при скрещивании двух высокопродуктивных чистых линий. В следующих поколениях эффект пропадает, так как имеет место расщепление признаков по законам Менделя.

3. Отбор массовый или индивидуальный по хозяйственным признакам.

4. Метод испытания производителей по потомству.

 Вопрос № 16

Опишите правило единообразия гибридов первого поколеня

   

 

  ПРАВИЛО ЕДИНООБРАЗИЯ ГИБРИДОВ ПЕРВОГО ПОКОЛЕНИЯ В опытах Менделя при скрещивании сорта гороха, имеющего желтые се­мена, с растением, имеющим зеленые семена, все потомство оказалось с желтыми семенами. При этом не играло роли, какую именно окраску семян имели материнские или отцовские растения. Следовательно, оба родителя в одинаковой мере способны передать свои признаки потом­ству. Аналогичные результаты обнаружились и в других опытах, в которых во внимание принимались иные признаки. Так, при скрещивании расте­ний с гладкими и морщинистыми семенами все потомство имело глад­кие семена. При скрещивании растений с пурпурными и белыми цветами у всех гибридов оказались исключительно пурпурные лепестки цветов и т. д. Обнаруженная закономерность получила название правила единооб­разия гибридов первого поколения. Признак, который проявляется в пер­вом поколении, получил название доминантного (от лат. dominans - гос­подствовать), не проявляющийся, подавленный признак-рецессивного (от лат. recessus - отступление). «Задатки» признаков (по современной терминологии - гены) Мендель предложил обозначать буквами латинскою алфавита. Гены, относя щиеся к аллельной паре, принято обозначать одной и той же буквой, но ген доминантного признака - прописной, а рецессивного - такой же буквой строчной. Исходя из сказанного, ген пурпурной окраски цветов следует обозначать, например, как «Л», ген белой окраски цветов - как «а», ген желтой окраски семян - как «В», а ген зеленой окраски се­мян - как «b» и т. д. Вспомним, что каждая клетка тела имеет диплоидный набор хромо­сом. Все хромосомы парны, аллельные же гены находятся в гомологич­ных хромосомах. Следовательно, в зиготе всегда налицо два аллельных гена и гепотипическую формулу по любому признаку необходимо запи­сывать двумя буквами. Если какая-либо пара аллелей представлена двумя доминантными или двумя рецессивными генами, такой организм называется гомозиготным. Если в одной л той же аллели один ген доминантный, а другой - рецессивный, такой организм носит название гетерозиготного. Гомозиготную доминантную особь следует записать, например, как АА, рецессивную - аа, гетерозиготную - Аа, Опыты показали, что рецессив­ный ген проявляет себя только в гомозиготном состоянии, а доминант­ный- как в гомозиготном, так и в гетерозиготном состоянии. Гены расположены в хромосомах. Следовательно, например, растение с пурпурной окраской цветов в какой-то паре гомологичных хромосом не­сет пару аллелей пурпурной окраски, В результате мейоза гомологичные хромосомы (а с ними аллельные гены) расходятся в различные гаметы.   Но так как у гомозиготы оба аллельных гена одинаковы, все гаметы не­сут этот ген. Те же рассуждения применимы и к растению с белой ок­раской цветов, и в равной мере к любым другим организмам, гомозигот­ным по какому-нибудь признаку. Следовательно, гомозиготная особь дает один сорт гамет (рис. 43). Опыты по скрещиванию предложено записывать в виде схем. Услови­лись родителей обозначать буквой Р (от лат. parentes - родители), осо­бей первого поколения - F1 (от лат. filii - дети, filiale - поколение), особей второго поколения - F2и т. д. Скрещивание обозначают знаком умножения (X), генотипическую формулу материнской особи записы­вают первой, а отцовскую - второй. В первой строке выписывают генотипические формулы родителей, во второй-их гаметы, в третьей - ге­нотипы первого поколения и т. д. Опыт по скрещиванию гомозиготного гороха с пурпурными цветами и гороха с белыми цветами можно записать так;   Учитывая, что у гомозиготных особей все гаметы однородны, схему можно записать проще:   Так как у первого родителя только один сорт гамет (А) и у второго родителя также только один сорт гамет (а), возможно лишь одно соче тание -Аа. Все гибриды первого поколения оказываются однородными: доминантными гетерозиготами. Следовательно, первое правило Менделя, или правило единообразия первого гибридного поколения, в общем виде можно сформулировать так: при скрещивании гомозиготных особей, отличающихся друг от друга поодной паре альтернативных (взаимоисключающих) признаков, все по­томство в первом поколении единообразно как по фенотипу, так и по генотипу (см. таблицу I на вклейке, рис. А). Для записи скрещиваний нередко применяют специальные решетки, ко­торые предложены английским генетиком Пеннетом и названы по его имени решетками Псннета. Ими удобно пользоваться при анализе более сложных скрещиваний, чем моногибридное. Принцип построения решетки таков; вверху по горизонтальной линии выписывают гаметы материнской особи, слева по вертикали - гаметы отцовской особи, в местах же пе­ресечений - вероятные генотипы потомков, а именно:  

 Вопрос № 29


Поделиться с друзьями:

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.011 с.