Целочисленного программирования — КиберПедия 

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Целочисленного программирования

2020-05-07 230
Целочисленного программирования 0.00 из 5.00 0 оценок
Заказать работу

 

Если в задаче целочисленного программирования количество управляю­щих переменных равно двум, а ограничения имеют вид неравенств, то ее можно решить графическим методом. При этом процесс решения состоит из двух этапов.

 

Этап 1. Решение исходной задачи обычным графическим мето­дом. Если найденное оптимальное решение является целочисленным, то решение прекращают. Если же найденное оптимальное решение содержит хотя бы одно дробное значение, то переходят к этапу 2.

Этап 2. В непосредственной близости от границ ОДР задачи со стороны, где расположена вершина оптимального решения нецелочисленной задачи (т.е. вблизи тех границ ОДР, куда указывает вектор градиента целевой функции), строят точки, координатами которых являются целые числа. Дальнейшее решение в точности повторяет графическое решение обычной задачи линейного программирования, с тем лишь отличием, что, прод­вигая в направлении вектора градиента линию уровня целевой функции, находят последнюю из целочислен­ных точек на пути продвижения. Именно ее координаты и будут являться опти­мальным целочисленным решением исходной задачи.

 

ПРИМЕР: Найдите графическим методом оптимальное решение целочисленной задачи линейного программирования, заданной моделью вида:

Вначале решим поставленную задачу графическим методом без ограничения на целочисленность управляющих переменных.

Рис. 4.

 

Как следует из рассмотрения рис. 4, ОДР задачи есть трапеция ОАВС, а оптимальным решением задачи будут являться координаты точки В, т.е. получено нецелочисленное оптимальное решение задачи в виде: .

Построим внутри ОДР целочисленную сетку и примем во внимание точки D, E и F, имеющие целые значения координат. Очевидно, что наиболее близкой к точке В оказывается точка Е, координаты которой и будут являться искомым целочисленным решением:  и при этом .

Метод Гомори решения задач целочисленного

Программирования

 

Для решения задач целочисленного программирования с любым количест­вом управляющих переменных может быть успешно применен метод Гомори. Алгоритм решения задачи этим методом содержит два этапа.

 

Этап 1. Решение задачи линейного программирования без условия цело­численности управляющих переменных обычным симплекс – методом. Если все значения управляющих переменных оптимального плана – целые числа, то решение заканчивают. Если же полученное оптимальное ре­шение содержит хотя бы одно дробное значение управляющих переменных, то переходят к этапу 2.

 

Этап 2. Составление дополнительного ограничения (сечения) и решение расширенной задачи обычным симплекс – методом. При этом дополнительное ограничение (сечение) отсекает нецело­численные решения, оставляя только целочисленные.

 

Целой частью [ r ] рационального числа r называется наи­большее целое число, не превосходящее числа r. Дробной частью числа r называется правильная дробь { r }, определяемая соотно­ше­нием: { r } = r – [ r ].

Пример 1.  Для числа 5 имеем: [5] = 5 и {5} = 0.

Пример 2.  Для числа 4/5 имеем: [4/5] = 0 и {4/5} = 4/5.

Пример 3. Для числа 8/3 имеем: [8/3] = 2 и {8/3} = 2/3.

Пример 4. Для числа – 4/5 имеем: [- 4/5] = - 1 и {- 4/5} = 1/5.

Пример 5. Для числа – 8/3 имеем: [- 8/3] = - 3 и {- 8/3} = 1/3.

Поясним, каким образом составляется сечение (дополнительное ограниче­ние). Пусть выполнен этап 1, т.е. найдено оптимальное реше­ние задачи в виде:

и пусть некоторое  - дробное число. Рассмотрим i -ое ограниче­ние задачи:

 

С учетом обозначений:  и  дополнительное ограничение (сечение) для переменной  можно записать в виде:

, где .

Очевидно, что при дополнении исходной задачи этим  ограни­чением, получают задачу большей размерности. На практике поступают так: последнюю симплекс-таблицу, содержащую опти­мальное (нецелочисленное) решение дополня­ют еще одной строкой с переменной  в списке базисных переменных и еще одним столбцом, соответствующим этой же дополнительной перемен­ной, а в дополнительную строку записывают числовые коэффициенты сечения, включая значение свободного члена. После чего, обычно в одну итерацию, продолжают решение задачи симплекс – методом и, наконец, получают искомое цело­численное решение исходной задачи.

Если при решении целочисленной задачи симплекс – методом (на этапе 1) получено несколько дробных значений, то дополни­тель­ное огра­ничение следует составлять для значения, имеющего максимальную дроб­ную часть.

ПРИМЕР: Найдите методом Гомори целочисленное решение задачи примера подраздела 3.3.1.

Решив поставленную задачу симплекс-методом, получим по­след­­нюю симплекс-таблицу, содержащую оптимальное (не целочис­ленное) решение, (убедитесь в этом сами) в виде:

 

БП СЧ
1 0 1 –1/2 3/2
0 1 0 1/2 5/2
L 0 0 1 1/2 13/2

 

Поскольку оба свободных члена имеют одинаковую дробную часть, равную 1/2, для определенности будем составлять сечение по Гомори для переменной . Его можно записать в виде:

 

.

Введя это ограничение и дополнительную базисную переменную в приведенную симплекс-таблицу, получим новую симплекс-таблицу, из которой в одну итерацию получим искомое целочисленное решение поставленной задачи.

 

БП СЧ
1 0 1 –1/2 0 3/2
0 1 0 1/2 0 5/2
0 0 0 1/2 –1 1/2
L 0 0 1 1/2 0 13/2
1 0 1 0 –1 2
0 1 0 0 1 2
0 0 0 1 –2 1
L 0 0 1 0 1 6

 

Из последней симплекс-таблицы следует  и при этом: .

 

Рекомендуемая литература по теме 3: [1 ÷ 4].

 

ВОПРОСЫ для самопроверки знаний по теме 3:

1. Чем отличаются целочисленные задачи от обычных задач линейного программирования?

 

 

 

2. В чем суть графического метода решения задач целочисленного программирования?

 

 

 

3. В чем суть метода Гомори решения задач целочисленного программирования?

 

 

4. Для какой управляющей переменной составляется дополни­тельное ограничение по Гомори?

 

 

 


Поделиться с друзьями:

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.022 с.