Проектирование рупорных громкоговорителей — КиберПедия 

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Проектирование рупорных громкоговорителей

2019-12-20 551
Проектирование рупорных громкоговорителей 0.00 из 5.00 0 оценок
Заказать работу

Рис. 1. Зависимости активных и реактивных акустических сопротивлений от частоты в горле рупоров разных контуров, имеющих бесконечную длину

Можно показать, что для оптимальной нагрузки драйвера громкоговорителя комплексное сопротивление в горле рупора должно быть полностью активным, а также сохранять свое значение в рабочем диапазоне частот. Иными словами, распространение звука должно быть ¦функцией мощности¦. Изучив кривые на рис. 1, можно установить, что наиболее близко удовлетворяют этим условиям кривые экспоненциального и гиперболического профиля.

Следующее условие, которое должно быть удовлетворено = минимальные искажения в горле рупора, вызванные ¦воздушной перегрузкой¦. Когда звуковая волна распространяется в воздухе, возникает ряд гармоник, искажающих форму волны. Это происходит, потому что, если равные положительные и отрицательные изменения давления действуют на некую массу воздуха, изменения объема не будут равными; изменение объема вследствие увеличения давления будет меньшим, чем из-за равного по величине уменьшения давления. Быстрые расширения и сжатия воздуха, вызванные распространением звуковых волн, происходят по адиабатическому закону, то есть отсутствует передача тепла. Таким образом, связь давления и объема описывается формулой:

где:
р = давление;
V = объем;
γ = постоянная адиабаты (приблизительно 1.4 для воздуха в нормальных условиях).

Рис. 2. Соотношение между давлением и объемом воздуха в случае адиабатического сжатия/расширения

В графическом виде механизм возникновения искажений проиллюстрирован на рис. 2. При равных по модулю изменениях объема изменение давление оказывается разным, что и приводит к искажениям.

Если бы рупор представлял собой цилиндрическую трубу, искажения увеличивались бы по мере распространения волны в сторону устья. Однако, в случае расширяющегося рупора по мере удаления от горла амплитуда давления волны уменьшается. Поэтому для минимальных искажений рупор должен расширяться резко, чтобы амплитуда давления волны уменьшалась как можно быстрее после того, как звуковая волна покинет горло. С этой точки зрения очевидно, что параболические и конические контуры дают наименьшие искажения из-за воздушной перегрузки, в то время как гиперболический рупор, напротив, даст самые большие искажения, потому что для равного уменьшения давления звуковой волне потребуется преодолеть большее расстояние.

Дальнейшее изучение рис. 1 показывает, что акустическое сопротивление гиперболического рупора находится в пределах 10 % от своего предельного значения в более широком диапазоне частот, чем у экспоненциального рупора. По этой причине гиперболический рупор обеспечивает лучшие условия согласования нагрузки с драйвером. Однако, ввиду значительно более высоких искажений в гиперболическом рупоре, экспоненциальный профиль (или одна из его производных) выбирается как наиболее удовлетворительный компромисс между гиперболическими и коническими контурами.

В тех случаях, где требуется использовать преимущества длинных медленно расширяющихся рупоров без сопутствующих высоких искажений, Олсон рекомендует использовать несколько разных экспоненциальных участков, первый из которых (возле горла) должен быть коротким, но расширяться очень резко, чтобы минимизировать искажения. Далее следует более длинная секция с меньшим коэффициентом расширения, после которой идет основная часть рупора, расширяющаяся очень медленно. Клипш также упомянул эту технику в своей статье, посвященной угловому рупору, называя ее ¦резиновое горло¦. Акустический импеданс устья каждой из секций рассчитан таким образом, чтобы соответствовать импедансу горла следующей секции. Этим способом могут рассчитываться практически любые соотношения между им-педансами в зависимости от частоты, однако, ввиду сложности этой процедуры, дополнительные усилия по расчетам не всегда оправданы.

Определение площади устья

Акустические активное и реактивное сопротивления для экспоненциального рупора в графическом виде представлены на рис. 3. Видно, что сопротивление имеет полностью реактивный характер ниже частоты, определяемой по формуле:

где:
с = скорость звука;
m = постоянная расширения, которая фигурирует в основной формуле профиля экспоненциального рупора.

где:
Sx = площадь на расстоянии х от горла;
Sт = площадь горла.

Рис. 3. Активное и реактивное акустическое сопротивление экспоненциального рупора

Частота fc, известная как частота среза, является самой низкой частотой, при которой рупор передает акустическую мощность, поэтому постоянная расширения определяет низшую воспроизводимую частоту конкретного рупора. Постоянная расширения может быть рассчитана для любой выбранной частоты среза, после чего может быть построен профиль рупора. Вышеупомянутое утверждение полностью справедливо только для рупоров бесконечной длины. В рупорах, как и в цилиндрических трубах, фронты волн, чья длина превышает диаметр устья, имеют свойство отражаться в обратном направлении, в результате чего возникает интерференция с последующими волновыми фронтами. Также как и для горла рупора, для устья должно выполняться условие активного характера сопротивления среды в рабочем диапазоне частот. Беранек показал, что для того, чтобы сопротивление излучению в устье носило активный характер, должно выполняться условие С/λ > 1, где С = окружность устья, а=λ = длина волны на самой низкой воспроизводимой частоте. Если устье рупора имеет некруглую форму, условие будет аналогичным, но для эквивалентной площади устья. То есть, если С = 2πrm > λс, тогда:

где:
λс = длина волны на частоте среза;
rm = радиус устья;
Sm = площадь устья.

Таким образом, для рупора квадратного сечения должно обеспечиваться условие, чтобы площадь устья превышала:

Ханна и Слепиан исследовали поведение фронтов звуковой волны в устье рупора с различных точек зрения и пришли к выводу, что минимальные отражения наблюдаются при наклоне профиля 45¦ (то есть вписанный угол 90¦). Так будет, если окружность устья равна длине волны на частоте среза. Заодно это иллюстрирует важность отличия между значением постоянной расширения, используемым для вычисления экспоненциального увеличения площади, и тем, которое используется при прорисовке реального профиля. Графики на рис. 4 (по данным Олсона) иллюстрируют эффект от сокращения длины рупора против идеального значения.

Рис. 4. Поведение ¦укороченных¦ рупоров. Отражения в устье вызывают пики и провалы в АЧХ возле частоты среза

Когда окружность устья становится меньше, чем длина волны, отражения в устье вызывают нежелательные пики и провалы амплитудно-частотной характеристики в районе нижней граничной частоты. Таким образом, если размеры устья в проекте сильно ограничены, то, как правило, предпочтительно увеличить нижнюю граничную частоту до значения, соответствующего размеру устья, чем получить неравномерность в области баса, проиллюстрированную на рис. 4.

Плоские и изогнутые фронты волны

До последнего момента предполагалось, что последовательные фронты волн остаются плоскими в процессе их распространения через рупор. В прямой круглой трубе это действительно так: фронт волны должен быть перпендикулярен к оси и стенкам (если бы фронт импульса приближался или удалялся от стенок, энергия, соответственно, поглощалась или излучалась; с другой стороны, сложный фронт, состоящий из первоначальной волны и ее отражений от стенок будет перпендикулярен к стенкам). Таким образом, фронты импульса, переданные по цилиндрической трубе, будут плоскими, в то время как фронты, переданные через конической рупор, будут сферическими. Ясно, что фронт волны, выходящей из экспоненциального рупора, будет в какой-то степени искривлен, и что обычные вычисления, сделанные из предположения, что фронт волны плоский, будут заведомо ошибочными. Практически реальная нижняя частота среза будет несколько отличаться значения, полученного теоретически, хотя погрешность профиля рупора при этом не будет чрезмерной.

Не совсем верно будет предполагать, что площади последовательных фронтов расширяются строго по экспоненциальному закону, поскольку любой выбранный профиль будет сам по себе определять форму фронтов волны, и вообще эта форма будет изменяться от первоначальной. Вилсон исходил из предположения о том, что фронты имеют сферическую форму, причем их кривизна меняется от ноля (плоский фронт) в горле рупора. На этом основании он рассчитал измененный контур, который находится внутри строго экспоненциального и очень близок к нему. Если, например, сделать ¦истинно экспоненциальный¦ рупор способом папье-маше, то после ¦усушки¦ форма станет очень близкой как раз к модифицированному профилю Вилсона. Однако, главное его утверждение, что фронты являются сферическими и изменяют свою кривизну, ни в коем случае не означает, что так и есть на самом деле.

Контур трактрикса

Войт в своем патенте 1927 года основывался на более простом предположении, что форма фронтов волны в пределах рупора является сферической, причем радиус сферы в процессе распространения неизменен на всем протяжении. Он обосновывал это предположение путем рассуждения, что, если кривизна фронта будет увеличиваться от нуля (плоская волна) в горле до некоторого значения в устье, то точки фронта, находящиеся на оси, будут перемещаться с более высокой скоростью, чем точки возле стенок рупора. Но, поскольку весь фронт должен перемешаться с одинаковой скоростью, равной скорости звука, то и форма фронта может быть только сферической и постоянного радиуса. Это требует, чтобы контур рупора являлся трактриксой.

Трактрикса = плоская кривая, прочерченная грузом, который тянут за веревку, причем тянущий человек перемещается по прямой линии, не проходящей через груз. Это = не кривая ¦метода погони¦ или траектория ракеты, которая стремится к убегающей цели, как часто ошибочно считают. Длина трактриксы, соответствующей устью с окружностью Хс, может быть выражена через длину волны, соответствующую нижней граничной частоте:

где у = радиус
Эквивалентная экспонента:

Обе эти кривые изображены на рис. 5.

Рис. 5. Сравнение экспоненциального контура и трактриксы

Видно, что трактрикса имеет доминирующий показательный компонент, который становится менее существенным по мере приближения к устью. Для первых 50 % длины экспоненциальный контур и трактрикса для одной и той же частоты среза и площади горла фактически идентичны, после этого трактрикса начинает расширяться гораздо быстрее, пока не достигнет полностью ¦раскрытого¦ устья (вписанный угол 180¦). Ввиду сложного характера формулы, лучший способ строить трактриксу = графический. Полученная таким образом кривая после некоторого сглаживания (для устранения неравномерностей, связанных с графическим способом построения) может использоваться для определения ординат точек контура рупора.

В то время, как трактрикса заканчивается, когда угол между рупором и осью составляет 90¦ (вписанный = 180¦), обычная экспонента продолжает идти в бесконечность в обоих направлениях. Таким образом, ¦трактриксовый¦ рупор оказывается короче экспоненциального с равными по размеру горлом и устьем.

Коэффициент полезного действия

Коэффициент полезного действия экспоненциального рупора определяется большим числом параметров, всестороннее рассмотрение которых было проведено Олсоном. Типичная эффективность басовых рупоров достигает 50 %, в то время как средне- и высокочастотные могут иметь КПД более 10 %. Эти цифры смотрятся очень выигрышно на фоне фазоинверторов (2-5 %) и закрытых ящиков (как правило, менее 1 %). Исключительно высокая эффективность рупорных громкоговорителей вовсе не означает, что их главное достоинство = возможность использовать усилители на небольшой мощности. Скажем, некоторые усилители с выходными каскадами, работающими в классе В, с рупорами могут создавать, напротив, большие уровни искажений, поскольку такой усилитель будет работать при небольших уровнях на выходе, когда уровень искажений типа ¦ступенька¦ будет относительно высоким.

Принципиальным преимуществом, следующим из высокой чувствительности, является то, что амплитуда перемещения диафрагмы головки громкоговорителя будет существенно меньшей, чем для всех остальных видов оформлений. Поэтому резко снижаются эффекты, вызванные нелинейностью магнитного поля и подвеса, кроме того, диффузор оказывается менее склонным к возникновению зонного эффекта. Таким образом, относительно высокие искажения, присущие головкам, оказываются сведенными к минимуму, и, поскольку рупор сам по себе искажений не вносит, излучаемый звук оказывается очень высокого качества.

Дополнительное преимущество, получаемое от уменьшения амплитуды смещения диффузора, состоит в том, что определенные виды интермодуляционных искажений, возникающие в результате изменения объема воздуха между диффузором и горлом рупора, также могут быть снижены до незначительных величин.

Настройка предрупорной камеры

Полость, неизбежно присутствующая между диафрагмой динамика и горлом рупора, играет важную роль при разработке рупорных систем, поскольку она может быть использована для ограничения максимальной воспроизводимой частоты. Нижняя граничная частота может быть установлена с достаточно высокой точностью, исходя из коэффициента расширения рупора в сочетании с величиной площади устья. Верхний же предел частоты определить труднее, поскольку он зависит от:

а) неодинаковых расстояний между разными участками диафрагмы и горла рупора;
б) внутренних переотражений и дифракционных эффектов внутри рупора, особенно если он = свернутый;
в) характеристик самой головки в области высоких частот;
г) эффективности полости между диафрагмой и горлом, выступающий в качестве фильтра низких частот.

Можно показать, что полость фиксированного объема представляет собой акустическое реактивное сопротивление величиной

где:
Sp = площадь диффузора;
V = объем предрупорной камеры;
р = плотность воздуха;
с = скорость звука;
f = частота.

Когда полость расположена между диафрагмой и горлом, она ведет себя как емкость, ¦шунтирующая¦ сопротивление собственно горла, поэтому при выборе корректных параметров комбинация полости и горла работает как фильтр низких частот, частота настройки которого определяется равенством комплексных сопротивлений полости и горла,

где:
Sт = площадь горла;
f = требуемое значение верхней граничной частоты.

Отсюда

Объем предрупорной камеры может быть теперь рассчитан таким образом, чтобы обеспечить спад характеристики на высоких частотах еще до тех значений, когда начинают проявляться трудноопределяемые эффекты (а) и (в), описанные выше.

Дополнительное преимущество, получаемое при использовании предрупорной камеры, настроенной так, чтобы предотвратить прохождение средних и высоких частот в басовый рупор, состоит в том, что эти частоты гораздо лучше воспроизводить с противоположной стороны диффузора, нагруженной на СЧ/ВЧ рупор, монтируемый на передней части громкоговорителя.

Более детальное обсуждение вопросов, связанных с практическим определением верхней и нижней границ полосы воспроизводимых частот, будет приведено далее.

Акустическое оформление обратной
стороны головки громкоговорителя

Выше было высказано мнение об искажениях, вызванных нелинейностью процессов расширения и сжатия воздуха. Этот эффект еще более подчеркивается в том случае, когда динамик нагружен на рупор только с одной стороны, поскольку горло работает как активное акустическое сопротивление только при перемещении диафрагмы в одном (¦прямом¦) направлении. Когда же диафрагма движется в обратном направлении, она испытывает существенно меньшее сопротивление, вследствие чего увеличивается ее смещение. Идеальный способ устранить такие искажения состоит в том, чтобы нагрузить диафрагму с обеих сторон одинаковыми рупорами, либо использовать басовый рупор, работающий на ¦заднюю¦ сторону динамика, а спереди нагрузить диффузор фронтальным СЧ/ВЧ рупором.

Рис. 6. Эффект ограничения предрупорной камерой высоких частот

Альтернативный способ, используемый многими разработчиками, заключается в том, что обратная сторона диффузора нагружена на закрытую компрессионную камеру, которая создает примерно такое же сопротивление, что и рупор. Таким образом, компрессионная камера снижает эффекты нелинейности от неодинаковой нагрузки на разные стороны диафрагмы, а также обеспечивает ¦более удобную¦ нагрузку для диафрагмы = закрытая камера с обратной стороны диффузора сама по себе дает ¦индуктивный¦ характер сопротивления, что уравновешивает ¦емкостное¦ сопротивление, которое представляет собой горло рупора на низких частотах.

Клипш утверждает, что объем компрессионной камеры определяется, как площадь горла, умноженная на скорость звука, деленная на 2л и частоту среза. Это выводится на основе следующих соотношений:

Сопротивление компрессионной камеры

где:
Sp = площадь диафрагмы;
V = объем воздушной камеры.

Сопротивление горла на частоте среза

где Sт = площадь горла.

Приравнивая эти два выражения, получаем:

Однако часть экспертов отмечает, что использование компрессионной камеры умаляет реализм воспроизведенного звука и настаивают на нагрузке в виде рупора с обеих сторон диафрагмы, либо же на комбинации рупора с одной стороны и прямого излучения = с другой. Другими словами, наиболее реалистичное звуковоспроизведение происходит в тех случаях, когда обеим сторонам диафрагмы ¦позволено¦ излучать звук в пространство.

Заключение

Подводя итог этой части статьи, следует заметить, что в проектировании рупорных громкоговорителей отсутствуют какие-либо универсальные формулы или правила. Основной смысл перечисления различных альтернативных подходов состоит в том, чтобы стимулировать других на эксперименты в тех областях, где результаты в большей степени должны оцениваться субъективно путем внимательных сравнительных прослушиваний a posteriori.

Как писал Вилсон: ¦Нет никаких оснований считать, что рупор, помещенный в корпус, имеет абсолютно точные характеристики какого-либо определенного типа прямого рупора, будь то показательный, гиперболический, конический или трактрикса, даже в том случае, если его размерам, взятым в качестве отправных точек, в точности следовали при изготовлении. Многократные изменения направления, в сочетании с отражениями, поглощениями и внутренними резонансами всегда будут теми факторами, которые приводят к расхождениям характеристик и сводят на нет любые попытки устроить корректное сравнение. Каждая рупорная конструкция должна быть оценена по достоинству как при помощи объективных измерений, так и путем субъективной оценки¦.

В следующей части статьи будет рассказано о других аспектах проектирования рупорного оформления, а также даны рекомендации, касающиеся разработки многополосных систем. Особое внимание будет уделено проектированию низкочастотной секции, поскольку басовое рупорное звено представляет наибольшую практическую ценность для профессионалов и любителей car audio. В первую очередь это касается тех, кто принимает участие в соревнованиях по звуковому давлению, где исключительно высокая отдача рупоров = это именно то, что требуется для победы.

Часть 2

В предыдущей части статьи выделены физические принципы, лежащие в основе действия рупоров, и показано, как, следуя некоторым основным правилам, получить от рупоров звучание потрясающей ясности и реализма. Однако (и это тоже очевидно), что, если кто-либо не готов сооружать и эксплуатировать чрезвычайно большие и дорогостоящие конструкции, при попытке уменьшить размеры до более приемлемых можно элементарно растерять многие из потенциальных качеств рупоров. Дальнейшее обсуждение посвящено способам, принятым при проектировании корпусов для рупорного оформления.

Уже было заявлено, что рупор ведет себя как трансформатор, преобразовывая акустическую энергию от высокого давления и низкой колебательной скорости в районе горла к низкому давлению и, соответственно, высокой скорости на выходе устья. По аналогии с электрическим трансформатором, в котором электрическое напряжение и ток соответствуют акустическому давлению и скорости, основные требования акустического рупора таковы:

• (а) горло должно быть правильно согласовано с источником сигнала (головкой громкоговорителя);
• (б) устье должно быть правильно согласовано с нагрузкой в виде объема воздуха в помещении прослушивания;
• (в) рупор должен функционировать в определенном диапазоне входной мощности и частоты.

Есть четыре основных параметра рупора, а именно = площадь устья, площадь горла, характеристики профиля расширения и длина. Любые три из них определят четвертый, и, следовательно, непосредственно характеристики рупора. Как только выбирается сечение некруглой формы и ось, отличная от прямой, проблема становится гораздо более сложной, причем математических и физических концепций для проектирования уже недостаточно. Тем не менее, основные характеристики даже свернутых рупоров в большой степени определены известными акустическими принципами, и наиболее эффективный метод проектирования состоит в том, чтобы исходить из этих принципов. При этом любое отклонение от теории, по возможности, должно быть научно обосновано.

Профиль расширения

В предыдущей части обсуждались наиболее распространенные формы рупоров, и было показано, что контур, который дает экспоненциальное увеличение площади фронта волны от горла до устья, обеспечивает лучший компромисс между чрезвычайно плавным расширением гиперболы (оптимальная нагрузка динамика, но чрезмерные искажения у горла) и быстрым расширением параболических и конических рупоров (минимальные искажения, но недостаточная нагрузка для драйвера). Поскольку точная форма фронта волны в пределах рупора неизвестна, придется принять за отправную точку что-то между модифицированным экспоненциальным профилем Вилсона (близким к строго экспоненциальному) и тракт-риксой Войта (которая в начале близка к экспоненте, но существенно отличается от нее в области устья). Выбор какого-либо конкретного контура в значительной степени вопрос личного предпочтения, основанного, в первую очередь, на собственном слушательском опыте.

Геометрия устья

Устье соединяет собственно рупор с окружающим пространством = помещением прослушивания. Одним из наиболее часто упоминаемых недостатков рупоров является то, что для полноценного воспроизведения баса они требуют устья очень большой площади. До некоторой степени это справедливо: нельзя получить контрабас из флейты-пикколо. Вместе с тем существует множество способов, при помощи которых можно уменьшить площадь устья до приемлемых размеров, не принося в жертву отдачу в области баса.

До тех пор, пока звуковые волны путешествуют внутри постепенно увеличивающегося рупора, они не встречают на своем пути каких-либо неоднородностей. Очевидно, что, если только длина и диаметр рупора не являются бесконечными, наступает момент, когда звуковая волна покидает устье. Хотя частота среза экспоненциального рупора определена постоянной расширения, линейность зависимости акустического сопротивления от частоты определяется площадью устья, которая (для выбранной площади горла и постоянной расширения) определяет полную длину рупора. Строго говоря, для отсутствия неоднородности устье должно иметь бесконечно большую площадь. Однако Олсон показал, что, если периметр устья четырехкратно превосходит длину волны на низшей рабочей частоте, то акустическое сопротивление устья не будет существенно отличаться от случая бесконечно большого рупора.

Более важное следствие = то, что, если смириться с небольшим уменьшением акустического сопротивления (на 6dB), периметр устья может быть сделан равным длине волны на частоте среза, то есть площадь устья будет равна

где λс = длина волны на частоте среза.

По мере уменьшения площади ниже этого значения нелинейность акустического сопротивления будет увеличиваться.

Эти значения относятся к ситуации, когда рупор находится в свободном пространстве, то есть угол излучения составляет 4π стерадиан. Практически такая ситуация никогда не встречается. Даже если бы рупор был помещен в центре бесконечной плоскости, излучение будет происходить только в половину пространства, то есть, телесный угол будет 2π стерадиан; при расположении в центре стены угол будет составлять π стерадиан, а в углу, сформированном двумя стенами и полом, устье будет излучать только в область π/2 стерадиан. Вывод заключается в том, что минимальная площадь устья для круглого рупора оказывается

при излучении в телесный угол 4π стерадиан, и это значение может быть уменьшено вдвое каждый раз, когда телесный угол делится на два. Таким образом, площадь устья может быть уменьшена до более приемлемого размера. Например, рупор с частотой среза 56 Гц (длина волны 6.1 м) потребовал бы устья площадью 3 кв. метра в случае свободного пространства, 0,74 кв. метра при размещении напротив стены, и всего 0,37 кв. метра = в углу, при этом отклонение акустического сопротивления будет меньше, чем 6dB.

Рис.8. Телесные углы, в которые излучает рупор при разном расположении

Ситуацию, которая проиллюстрирована на рис. 8, можно сравнить с устьем единственного рупора, помещенного в точку пересечения восьми комнат: четыре на одном этаже и четыре на другом. Даже притом, что слушатель в каждой комнате будет видеть только восьмую часть от полной площади устья, отдача в области баса останется на уровне ¦полноразмерного¦ рупора. Редко бывает так, чтобы что-либо доставалось бесплатно, и тем, кто для расширения диапазона в области баса выбирает угловое расположение громкоговорителя и использует при этом корпус минимально возможного размера, вероятно, придется смириться с призвуками, которые могут возникнуть вследствие такого расположения.

При виде сверху на план помещения с угловым рупором понятно, что сама комната обеспечивает естественное продолжение устья рупора. Многие слушатели отмечают, что укороченные угловые рупоры воспроизводят басовые ноты гораздо ниже теоретического предела, обусловленного размером устья. Это провоцирует на то, чтобы уменьшить площадь устья больше установленного ранее ограничения в 3dB, и вместо этого рассчитывать на размещение непосредственно в углу, чтобы ¦виртуально¦ увеличить площадь и длину рупора. Но применение этого способа не может быть рекомендовано, потому что, хотя отдача в области баса действительно сохраняется, внимательное прослушивание показывает, что в области первых двух октав выше частоты среза наблюдается неравномерность, которая часто сводит на нет реализм, присущий рупорам. Поэтому в случаях, когда размер корпуса ограничен, рекомендуется корректно спроектированный рупор с более высокой частотой среза, скажем, 80 Гц. Он обеспечит большую линейность и удовольствие от прослушивания, чем укороченный рупор, для которого постоянная расширения выбрана, исходя из частоты среза 40 Гц, но при этом длина ограничена так, чтобы площадь устья соответствовала частоте среза 80 Гц.

Рис. 9. Искажения, вызванные воздушной перегрузкой в горле

Большинство рупоров домашнего использования для простоты и дешевизны в изготовлении имеют прямоугольное сечение. Предшествовавшие комментарии относительно рупоров круглого сечения применимы и к прямоугольным, хотя ясно, что в углах фронт волны должен вести себя более сложным образом, в связи с чем эффективная площадь в случае прямоугольного сечения слегка уменьшается. При условии, что отношение размеров сторон устья не превышает 4:3, прямоугольные рупоры могут давать хорошие результаты.

Табличные данные для проектирования приведены для рупоров как прямоугольного, так и круглого сечения, рассчитанных для случаев углового (π/2 стерадиан) расположения, а также возле стены (π стерадиан).

Геометрия горла

Горло рупора служит для передачи фронтов волн от громкоговорителя, которые в горле в идеале имеют плоскую форму, непосредственно в рупор. Выше было показано, что рупор является акустическим транформатором, преобразующим акустическое излучение с высоким давлением и малой колебательной скоростью в горле в низкое давление и высокую колебательную скорость в устье. Очевидное преимущество высокого давления и, соответственно, низкой колебательной скорости в устье состоит в том, что при низкой скорости уменьшается амплитуда смещения диффузора, что, в свою очередь, снижает искажения, вызванные нелинейностью магнитного поля и подвеса. Одним из способов увеличения давления, а также наибольшего ¦уплощения¦ формы фронта звуковой волны состоит в том, чтобы выбрать площадь горла существенно меньшей величины, чем площадь диффузора громкоговорителя. Тесты, проведенные со многими громкоговорителями, показывают, что ¦эффективная площадь диффузора¦ составляет приблизительно 70% от излучающей площади диффузора, то есть, диффузор громкоговорителя, выполненный в виде усеченного конуса, имеет такую же отдачу, как диффузор плоской формы, площадь которого составляет 70% от площади конусного диффузора.

Есть множество причин, по которым диффузоры современных громкоговорителей не делают плоскими. Одним из нежелательных последствий использования конусных диффузоров является то, что излучаемые ими волны имеют неплоскую форму. Однако эмпирическим путем установлено, что при площади горла, составляющей от 1/4 до 1/2 эффективной площади диффузора, удается обеспечить удовлетворительное согласование между громкоговорителем и рупором, а также обеспечить приблизительно плоскую форму звуковых волн, если их длины существенно превышают размеры горла. Следует подчеркнуть, что для более высоких частот, когда длина волны сопоставима с физическими размерами диффузора громкоговорителя, площадь горла нужно выбирать такой же величины; при этом для устранения стоячих волн рупор должен быть круглого сечения, по крайней мере, в районе горла.

Явление искажений воздушной перегрузки вызвано нелинейными отношениями между давлением и объемом воздуха в горле рупора вследствие того, что процесс расширения и сжатия происходит по адиабатическому закону. Беранек получил отношения для коэффициента второй гармоники в горле бесконечного экспоненциального рупора:

% 2-ой гармоники = 1.73(f / fc)It x 10-2

где
f = частота,
fc = частота среза,
It = удельная мощность (ватт/кв. дюйм) в горле.

Это выражение дает близкие к истине значения и для рупоров конечной длины, потому что искажения в основном возникают около горла. Это выражение в графическом виде представлено на рис. 9, откуда можно определить площадь горла для выбранного значения мощности и коэффициента искажений.

Важно понять, что акустическая мощность, излучаемая музыкальными инструментами, чрезвычайно мала, и, что чем выше частота, тем более низкая акустическая мощность требуется для того, чтобы вызывать одинаковую субъективную громкость, воспринимаемую человеческим ухом. За исключением большого симфонического оркестра и органа (которые вообще бесполезно пытаться воспроизвести в домашних условиях, хоть сколько-нибудь приближаясь к их нормальному уровню громкости), уровни акустической мощности чрезвычайно малы. Если, скажем, задаться значением 3 Вт при 1 % искажения для частоты среза, то на частоте в четыре раза большей это даст значения 0.05 Вт и 0.5 % искажений, чего для обычных повседневных прослушиваний вполне достаточно.

Вышеупомянутые предложения о мощности и искажениях в соответствии с рис. 9 дают значение площади горла примерно 10 кв.см, что неплохо для случая громкоговорителя размером 3 1/2 дюйма, который имеет эффективную площадь 43 кв.см (ее четверть как раз составляет чуть более 10 кв.см). Конечно, если площадь горла увеличить, как это происходит в случае с большими по размеру громкоговорителями, то и допустимая мощность при заданном уровне искажений также увеличится.

Установив значения площади горла, устья и постоянной расширения, длину рупора (и, следовательно, его площадь в любой точке) можно рассчитать математически или графически.

Рупор как фильтр

В предыдущих разделах показано, как рупор может действовать в качестве полосового фильтра = нижняя граничная частота определена коэффициентом расширения, а верхняя = объемом камеры между громкоговорителем и горлом. Важно, что в этой полосе частот характеристики рупора очень линейны. Кроме того, при тщательном выборе нижней граничной частоты и площади горла, с учетом будущего местоположения, можно гарантировать, что нелинейность и искажения, создаваемые рупором на низких частотах, окажутся на очень малом уровне.

На более высоких частотах, превышающих частоты среза примерно в четыре раза, вследствие внутренних переотражений и стоячих волн становится очевидным увеличение амплитуды нелинейных искажений внутри рупора. Нелинейности будут еще выше, если материал, из которого изготовлен рупор, имеет свойство резонировать, а также в случае свернутых рупоров, когда волновые фронты на более высоких частотах искажаются в изгибах. Фактически есть определенный предел, выше которого использование свернутого рупора становится нежелательным: не должно быть изгибов далее той точки, в которой длина волны наивысшей воспроизводимой частоты превышает 0.6 текущего диаметра. Относительно этого ограничения будет сказано более подробно в процессе обсуждения способов сворачивания, но уже ясен практический предел самой высокой частоты, которую рупор может точно воспроизвести.

Дальнейшее ограничение становится очевидным из графика зависимости искажений в горле от частоты (рис. 9). По мере увеличения частоты процент искажений в горле для заданной мощности также увеличится, и, хотя известно, что в большинстве сложных музыкальных звуков с увеличением частоты уровень энергии уменьшается, все же, начиная с какой-то определенной частоты, искажения в горле станут недопустимыми.

Обычно используется простое, но весьма адекватное правило ¦на пальцах¦ = рупор не должен воспроизводить более четырех октав выше своей низшей граничной частоты. Хотя при этом пуристы порой предпочитают ограничивать диапазон только тремя октавами, чтобы гарантировать еще более низкие уровни искажений.

Полная ¦многорупорная¦ система

Максимальный диапазон частот, который может воспроизвести высококачественный широкополосный громкоговоритель, составляет приблизительно 9 октав, то есть от 40 Гц до 20 кГц. Ясно, что, по причинам, отмеченным выше, для одного единственного рупорного гром


Поделиться с друзьями:

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.069 с.