Будем искать решение этого уравнения в виде произведения двух функций — КиберПедия 

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Будем искать решение этого уравнения в виде произведения двух функций

2019-08-04 134
Будем искать решение этого уравнения в виде произведения двух функций 0.00 из 5.00 0 оценок
Заказать работу

 

j = N(l, m) Е(e);

 


тогда, подставляя последнее выражение в уравнение (13) и разделяя функции независимых переменных, получим систему уравнений (k – произвольное число, которое будем считать положительным и целым)

 

 

Первое уравнение имеет решение: Е = A cos k e + В sin k e;

второе, если положить N = L(l) М(m) и разделить переменные, может быть приведено к системе уравнений

 

 

имеющей в качестве частных решений так называемые присоединенные функцииЛежандра[4]

 

 (14)

 

Комбинируя эти функции так, чтобы выражение потенциала скоростей возмущенного движения было ограниченным при l ® ¥, получим общее выражение потенциала скоростей

 

 


здесь последнее слагаемое представляет собой потенциал скоростей набегающего на тело однородного потока со скоростью на бесконечности V ¥, направленной параллельно оси Оу (Приложение 1, б).

Полагая в только что выведенной общей формуле потенциала

An1 = с V ¥ С n, An2 = An3 =… = 0, Bn1 = Вn2 =… = 0,

 

т.е. довольствуясь решением, содержащим cos e, и, кроме того, представляя у по формулам, помещенным в начале § 1, как функцию l, m и e

 

 

получим следующее выражение потенциала скоростей поперечно набегающего со скоростью V ¥ вдоль оси Оу потока:

 

 

или, используя определение присоединенных функций Лежандра (14),

 

                       (15)

 

Для определения постоянных Сn, как и ранее, следует составить граничное условие на заданной поверхности обтекаемого тела. В этом случае неосесимметричного движения функция тока отсутствует и приходится непосредственно вычислять нормальную скорость Vn = ¶ j / ¶ n и приравнивать ее нулю.

Несколько облегчая вычисления, выпишу в выбранной системе координат (l, m) условие, что при непроницаемости поверхности обтекаемого тела элемент дуги его меридианного сечения параллелен составляющей скорости в меридианной плоскости (условие скольжения жидкости по поверхности тела):

 

 

или, вспоминая выражения элементов дуг координатных линий и проекций градиента потенциала на направления этих линий,

 

 

Отсюда вытекает искомое граничное условие

 

                                           (16)

 

в котором l является заданной функцией m согласно уравнению контура обтекаемого тела в меридиональной плоскости. Составляя частные производные ¶ j / ¶ l, ¶ j / ¶ m и используя (15) получаю:

 

 

 

Заменив входящие сюда выражения вторых производных на основании дифференциальных уравнений функций Рn и Qn


 

получим после простых приведений

 

 

 

Подставляя эти выражения производных в (16) и используя ранее выведенные значения коэффициентов Ламе

 

 

получим после очевидных сокращений

 

 

Имея в виду, что на поверхности тела l представляет заданную функцию от m, перепишем граничное условие в окончательной форме так:

 

                            (17)

 

 


3. Продольное и поперечное обтекание удлиненных тел вращения

 

В большинстве практических приложений приходится иметь дело с телами вращения, удлинение которых, т.е. отношение длины к максимальной толщине, довольно велико (порядка 8–12). Это объясняется хорошей обтекаемостью такого рода тел реальной жидкостью.

Расчет обтекания тел вращения большого удлинения может быть произведен приближенным методом. Изложим его основную идею[5].

Основным затруднением в решении задачи является определение коэффициентов Аn при продольном и Сn – при поперечном обтекании тела. Чем проще будет связь между l и m, определяющая форму контура в меридианной плоскости, тем меньше коэффициентов Аn, Сn можно брать в разложениях потенциала скоростей. Самая простая связь представляется равенством l = const, т.е. случаем обтекания эллипсоида. Отсюда следует вывод: чем ближе исследуемое тело по форме к эллипсоиду, тем легче может быть разрешена задача. В связи с этим решим, прежде всего, вопрос о выборе положения начала координат на продольной оси тела. Замечу, что фокусы удлиненного эллипсоида вращения находятся посередине отрезка, соединяющего точки пересечения большой оси и поверхности эллипсоида с центром кривизны поверхности в этих точках. Начало координат следует выбирать совпадающим с серединой отрезка, соединяющего фокусы; при таком выборе начала координат, чем ближе обтекаемое тело к эллипсоиду, тем меньше уравнение контура будет отличаться от простейшего равенства l = const.

Если обтекаемое тело имеет большое удлинение, то поверхность его располагается в области значений l, мало превышающих значение l = сhx = 1 или x = 0, соответствующее отрезку оси Oz, соединяющему фокусы. Рассматривая значения функций Qn(l) и dQn/d l при l, лишь немного превышающих единицу, убедимся, что при достаточно малых x будут иметь

место равенства

 

                                        (18)

 

где gn и dn – малые по сравнению с первыми членами поправки. Замечательно, что согласно равенствам (18), при малых x все функции Qn и dQn/d l в первом приближении не зависят от индекса n. Основное граничное условие продольного обтекания (9) в первом приближении будет, согласно (18), иметь вид

 

                                                    (19)

 

где производная dPn/d m представляет известную функцию величины m = cos h. Ограничивая сумму некоторым фиксированным числом членов n = m, можно, пользуясь выражениями полиномов Лежандра (из § 1), написать тождество

 

                                  (20)

 

из которого можно вывести выражения коэффициентов An через an. Так, например, при m = 5 имеем

 

A1 = a1 – 3/5 a3 + 3/35 a5, A2 = a2 – 9/7 a4, A3 = 8/5 a3 – 32/15 a5,

A 4 = 16/7 a 4, A 5 = 64/21 a 5.


Представив контур меридианного сечения приближенным тригонометрическим разложением в эллиптических координатах

 

                                              (21)

 

определим тем самым числа аn, а уже после этого, согласно тождеству (20), и величины коэффициентов An, что и дает первое приближение к решению задачи об осесимметричном продольном обтекании удлиненного тела вращения. Если удлинение обтекаемого тела велико, то указанное приближение оказывается для практики достаточным. При желании можно учесть в формулах (18) остаточные члены gn и dn, что приведет ко второму и следующим приближениям.

Аналогичным путем решается вопрос о поперечном обтекании удлиненного тела вращения. При плавности контура l изменяется в пределах от 1 + ½ x2min до 1 + ½ x2max; при этом m остается в пределах ±1. Таким образом, можно считать, что производная d l /d m имеет порядок x2max, т.е. сравнительно мала. Отсюда следует, что величина

 

 

имеет порядок единицы. Рассматривая граничное условие (17) видим, что стоящая в квадратной скобке слева величина

 

 

мала по сравнению с величиной . Действительно,


 

Таким образом, в квадратной скобке в левой части равенства (*) первый одночлен имеет при малых x порядок 1/x2, второй – ln 1/x.

Из приведенного рассуждения следует, что на поверхности удлиненного тела вращения, где x мало, точное граничное условие поперечного обтекания (17) может быть заменено на приближенное

 

                        (22)

 

Сравнивая это граничное условие с приближенным граничным условием продольного обтекания (19), видим, что между искомыми коэффициентами An и Cn существует простое соотношение

 

Cn = -2 An / n (n +1).                                         (23)

 

В первом приближении обе задачи – продольного и поперечного обтекания – решаются одновременно и сравнительно легким путем. При обычных значительных удлинениях тел вращения вполне можно довольствоваться первым приближением.

Определив коэффициенты An и Cn, найду выражения потенциалов и компонент скоростей для продольного и поперечного обтеканий, после чего уже нетрудно разыскать и распределение скоростей и давлений по поверхности заданного тела вращения или вне его при любом угле. Отмечу, что при всех вычислениях на поверхности удлиненного тела и вблизи нее можно пользоваться для Qn и dQn/d l приближенными выражениями (18). Само собой разумеется, что при удалении от поверхности обтекаемого тела l возрастает и формулы (18) становятся все менее и менее точными.



Поделиться с друзьями:

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.025 с.