Химическая связь в твердых телах. Металлическая связь. Водородная связь. — КиберПедия 

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Химическая связь в твердых телах. Металлическая связь. Водородная связь.

2018-01-29 271
Химическая связь в твердых телах. Металлическая связь. Водородная связь. 0.00 из 5.00 0 оценок
Заказать работу

Свойства твердых веществ определяются природой частиц, занимающих узлы кристаллической решетки и типом взаимодействия между ними. Кристаллическая структура характеризуется правильным (регулярным) расположением частиц в строго определенных местах в кристалле. Точки, в которых размещены частицы, называются узлами кристаллической решетки. В зависимости от того, какие структуры находятся в узлах, различают следующие типы кристаллических решёток. Атомная кристаллическая решётка построена из атомов, соединенных, как правило, ковалентной связью. Поэтому эти кристаллы обладают высокими твердостью, температурой плавления и низкими тепло- и электропроводностью. Например, углерод (алмаз и графит) карборунд SiC, бор. Молекулярная кристаллическая решётка образована молекулами, между которыми осуществляется межмолекулярное взаимодействие. Поскольку силы между молекулами в этих решетках относятся к типу слабых ван-дер-ваальсовых, такие вещества плавятся при довольно низких температурах. Большая часть веществ, которые при комнатной температуре находятся в жидком и газообразном состоянии, при низких температурах образуют молекулярные кристаллы. Например, метан СН4, диоксид углерода СО2 и т. Д. Ионная кристаллическая решётка состоит из положительных и отрицательных ионов, между которыми действуют электростатические силы. Поскольку они намного превышают слабые ван-дер-ваальсовы силы, то температуры плавления ионных кристаллов выше, чем атомных и молекулярных. Такие кристаллы образуются элементами с сильно различающимися электроотрицательностями (например, галогениды щелочных металлов). Кристаллы, содержащие многоатомные ионы, имеют более низкие температуры плавления; так для NaCltпл. = 801 °C, а для NaNO3 tпл = 311 °C.Кристаллические решетки, образуемые металлами, называются металлическими. В узлах таких решеток находятся положительные ионы металлов, в межузлиях – валентные электроны (электронный газ).Наибольшую температуру плавления из металлов имеют d-элементы, что объясняется наличием в кристаллах этих элементов ковалентной связи, образованной неспаренными d-электронами, помимо металлической, образованнной s-электронами.

Металлическая связь — химическая связь между атомами в металлическом кристалле, возникающая за счёт перекрытия (обобществления) их валентных электронов.Свободно движущиеся электроны обусловливают высокую электро- и теплопроводность. Многие металлы обладают высокой твёрдостью, например хром, молибден, тантал, вольфрам и др. Вещества, обладающие металлической связью, часто сочетают прочность с пластичностью, так как при смещении атомов друг относительно друга не происходит разрыв связей.

Водородная связь — форма ассоциации между электроотрицательным атомом и атомом водорода H, связанным ковалентно с другим электроотрицательным атомом. В качестве электроотрицательных атомов могут выступать N, O или F. Водородные связи могут быть межмолекулярными или внутримолекулярными.Энергия водородной связи значительно меньше энергии обычной ковалентной связи (не превышает 40 кДж/моль). Однако этой энергии достаточно, чтобы вызвать ассоциацию молекул, то есть их объединение в димеры или полимеры. Именно ассоциация молекул служит причиной аномально высоких температур плавления и кипения таких веществ, как фтороводород, вода, аммиак. Связь этого типа, хотя и слабее ионной и ковалентной связей, играет очень важную роль во внутри- и межмолекулярных взаимодействиях. Водородные связи во многом обусловливают физические свойства воды и многих органических жидкостей (спирты, карбоновые кислоты, амиды карбоновых кислот, сложные эфиры). Прочность водородной связи ( энтальпия образования комплекса) зависит от полярност и комплекса и колеблется от ~ 6 кДж/моль для комплексов молекул галогеноводородов с инертными газами до 160 кДж/моль для ион-молекулярных комплексов (AHB)±; так, для комплекса (H2O•H•OH2)+, образованного H2O и H3O+ — 132 кДж/моль в газовой фазе.

Предмет химической термодинамики. Понятие системы. Виды систем. Термодинамические параметры. Уравнения состояния на примере уравнения состояния идеального газа.

Хими́ческаятермодина́мика — раздел физической химии, изучающий процессы взаимодействия веществ методами термодинамики. Применение термодинамического подхода к химическим реакциям основано на том, что в фундаментальном уравнении Гиббса в качестве переменных можно использовать как независимые переменные — массы (количества вещества) компонентов, — если условия задачи не требуют детального рассмотрения химического равновесия, так и массы (количества вещества) составляющих веществ совместно с уравнениями связи, описывающими химические реакции, — когда требуется подробное описание химического равновесия[1].

Основными направлениями химической термодинамики являются:

1. Классическая химическая термодинамика, изучающая термодинамическое равновесие вообще.

2. Термохимия, изучающая тепловые эффекты, сопровождающие химические реакции.

3. Теория растворов, моделирующая термодинамические свойства вещества исходя из представлений о молекулярном строении и данных о межмолекулярном взаимодействии.

В химии широко используется понятие " система ". Системой называют произвольную часть пространства, где содержится по крайней мере одно (или несколько) веществ. Внутри системы (между ее отдельными частями) может происходить химическое взаимодействие или перераспределение массы и энергии. Часть объема системы, во всех точках которой физические и химические свойства одинаковы, отделенная от других частей системы поверхностью раздела, называют фазой. Агрегатное состояние веществ внутри одной и той же фазы одинаково (твердая фаза, жидкая фаза, газообразная фаза). Системы, включающие только одну фазу, называют гомогенными, а системы, состоящие из двух и более фаз, относят к гетерогенным. Например, смеси газов и полностью смешивающиеся между собой жидкости представляют собой однофазные (гомогенные) системы. Если же в системе находятся несколько несмешивающихся между собой жидкостей, то она будет состоять из такого же числа жидких фаз. Другие примеры многофазных (гетерогенных) систем: вода и водяной пар (две фазы); водяной пар, водный раствор соли и твердая соль (трехфазная система). Совокупность кристаллов какой-либо соли составляет одну фазу, поскольку каждый из кристаллов однороден по химическому составу и физическим свойствам и подобен любому другому кристаллу из их совокупности (хотя и может быть отделен от других кристаллов поверхностью раздела). Очевидно, наличие поверхности раздела является только одним из признаков фазы. Механическая смесь кристаллов хлорида натрия, нитрата калия и карбоната кальция будет состоять из четырех твердых фаз, а смесь безводного карбоната натрия с десятиводным кристаллогидратом Na2CO3·10 H2O представляет собой двухфазную систему, так как оба вещества не только различны по содержанию воды, но и имеют определенную кристаллическую структуру, а следовательно, отличаются и по физико-химическим свойствам. Понятие фазы неприменимо к очень малым количествам вещества и к системам с развитой поверхностью.

Параметры состояния, термодинамические параметры — физические величины, характеризующие состояние термодинамической системы: температура, давление, удельный объём, намагниченность, электрическая поляризация и др. Различают экстенсивные параметры состояния, пропорциональные массе системы:объём, внутренняя энергия, энтропия, энтальпия, энергия Гиббса, энергия Гельмгольца (свободная энергия),

и интенсивные параметры состояния, не зависящие от массы системы: давление, температура, концентрация, магнитная индукция и др. Не все параметры состояния независимы, так что равновесное состояние системы можно однозначно определить, установив значения ограниченного числа параметров состояния.


Поделиться с друзьями:

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.014 с.