Свойства операции транспонирования матриц — КиберПедия 

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Свойства операции транспонирования матриц

2017-12-22 468
Свойства операции транспонирования матриц 0.00 из 5.00 0 оценок
Заказать работу

1) (А + В)Т = А Т + В Т;

2) (АВ)Т = В Т А Т;

3) ()Т = Т;

4) (А –1)Т = (А Т)–1,

где k – число, А и В – матрицы.

Матрица А называется симметрической, если А = А Т.

 

Ортогональной называется матрица А, для которой А Т = А –1.

 

Следующие три условия равносильны:

1) матрица А ортогональна;

2) матрица А –1 ортогональна;

3) столбцы матрицы А образуют ортонормированную систему векторов.

 

Ортогональная матрица может не иметь действительных собственных значений.

Симметрическая матрица всегда имеет действительные собственные значения, и все ее собственные значения – действительные числа. Собственные векторы симметрической матрицы, принадлежащие различным собственным значениям, ортогональны.

Для каждой симметрической матрицы А существует такая ортогональная матрица Q, что

Q 1 А Q – диагональная матрица. Построение этой ортогональной матрицы осуществляется следующим образом:

1) строим невырожденную матрицу Т, которая приводит матрицу А к диагональному виду;

2) подвергаем столбцы найденной матрицы Т процессу ортогонализации Шмидта, а затем нормируем полученные векторы;

3) строим ортогональную матрицу Q, столбцами которой являются координаты полученной в п.2 ортонормированной системы векторов.

 

Пример. Привести к диагональному виду с помощью ортогональной матрицы симметрическую матрицу А = .

Р е ш е н и е. Характеристическое уравнение матрицы А имеет вид:

| AλE |= = = (5 – λ) = (5 – λ) = (5 – λ) (1 + λ) (5 – λ) (1 + λ) =(5 – λ) (1 + λ)2 = 0.

Отсюда следует, что матрица А имеет два собственных значения: λ 1 = –1, λ 2 = 5.

Фундаментальная система решений системы уравнений (A + E) х = θ состоит из двух векторов

и , а система уравнений(A – 5 E) х = θ из одного вектора (вычисления провести самостоятельно).

Матрица Т, приводящая матрицу А к диагональному виду, имеет вид Т = .

После ортогонализации и нормирования столбцов этой матрицы получим ортогональную матрицу

Q = .

Матрица, обратная к Q, совпадает с Q Т, т.е., Q –1 = .

Нетрудно проверить, что Q 1 А Q = .

Задания. Привести к диагональному виду с помощью ортогональной матрицы следующие матрицы:

1. А = , 2. А 2 = , 3. А 3 = , 4. А 4 = .

 

2.4. Квадратичные формы

Переход от системы n неизвестных х 1, х 2, …, хn к системе n неизвестных

у 1, у 2, …, уn по формуле x = S y, где х = х (х 1, х 2, …, хn), у = у (у 1, у 2, …, уn), S – квадратная матрица порядка n, называется линейным преобразованием неизвестных. Если S – невырожденная матрица, то линейное преобразование неизвестных также называется невырожденным.

Квадратичной формой F (х 1, х 2, …, хn) от n неизвестных х 1, х 2, …, хn называется сумма, каждое слагаемое которой является или квадратом одного из этих неизвестных, или произведением двух разных неизвестных

F (х) = . (1)

Квадратичную форму можно записать в виде F (х) = х А х, где х = (х 1, х 2, …, хn),

А – симметрическая матрица порядка n, которая называется матрицей квадратичной формы F (х).

Две квадратичные формы называются эквивалентными, если одна из них переводится в другую посредством невырожденного линейного преобразования.

Если в квадратичной форме F (х) = х А х неизвестные подвергнуть линейному преобразованию x = S y, то получится квадратичная форма F (у) = у (S T А S) y с матрицей S T А S.

Каноническим видом данной квадратичной формы называется эквивалентная ей форма, не содержащая произведений неизвестных. Каждую квадратичную форму можно привести к каноническому виду с помощью линейного преобразования неизвестных

x = S y с ортогональной матрицей S. Столбцами матрицы S являются координаты некоторого ортонормированного базиса B н =(e 1,..., e n), в котором матрица A имеет диагональный вид D = S T А S. D − диагональная матрица, на диагонали которой стоят собственные числа матрицы.

Если F (х) > 0 (< 0) для всех хθ, то квадратичная форма F (х) называется положительно (отрицательно) определенной. Квадратичная форма положительно (отрицательно) определена, если в каком-нибудь ее каноническом виде нет отрицательных (положительных) коэффициентов при квадратах неизвестных.

Критерием положительной определенности квадратичной формы является следующее утверждение (критерий Сильвестра): для того, чтобы квадратичная форма А (х, х) была положительно определенной, необходимо и достаточно, чтобы все главные миноры ее матрицы А были положительны, т.е. Dk > 0, k = 1, 2, …, n.

 

Следующие условия равносильны:

1) квадратичная форма F (х) = х А х положительно определена;

2) собственные значения матрицы А положительны;

3) угловые миноры матрицы А положительны.

 

Следующие условия равносильны:

1) квадратичная форма F (х) = х А х отрицательно определена;

2) собственные значения матрицы А отрицательны;

3) все угловые миноры матрицы А нечетного порядка отрицательны, а все угловые миноры четного порядка положительны.

 

Пример 1. Написать матрицу квадратичной формы

F = 2 – 5 + 8 + 4 x 1 x 2 – 2 x 1 x 3 + 6 x 2 x 3.

 

Р е ш е н и е. Обозначим коэффициент при произведении x i x k = x k x i (ik) через

аik + аki, причем аik = аki. Член (аik + аki) x i x k запишем в виде аikxixk + аkixkxi. Тогда квадратичную форму F можно записать в виде

F = 2 + 2 x 1 x 2x 1 x 3 + 2 x 2 x 1 – 5 + 3 x 2 x 3 x 3 x 1 + 3 x 3 x 2 + 8 .

Теперь матрица А квадратичной формы имеет вид: A = .


Поделиться с друзьями:

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.012 с.