Взаимное расположение двух прямых на плоскости — КиберПедия 

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Взаимное расположение двух прямых на плоскости

2017-12-12 743
Взаимное расположение двух прямых на плоскости 0.00 из 5.00 0 оценок
Заказать работу

Условия параллельности двух прямых:

а) Если прямые заданы уравнениями (4) с угловым коэффициентом, то необходимое и достаточное условие их параллельности состоит в равенстве их угловых коэффициентов:

k 1 = k 2. (8)

б) Для случая, когда прямые заданы уравнениями в общем виде (6), необходимое и достаточное условие их параллельности состоит в том, что коэффициенты при соответствующих текущих координатах в их уравнениях пропорциональны, т. е.

(9)

Условия перпендикулярности двух прямых:

а) В случае, когда прямые заданы уравнениями (4) с угловым коэффициентом, необходимое и достаточное условие их перпендикулярности заключается в том, что их угловые коэффициенты обратны по величине и противоположны по знаку, т. е.

(10)

Это условие может быть записано также в виде

k 1 k 2 = -1. (11)

б) Если уравнения прямых заданы в общем виде (6), то условие их перпендикулярности (необходимое и достаточное) заключается в выполнении равенства

A 1 A 2 + B 1 B 2 = 0. (12)

Координаты точки пересечения двух прямых находят, решая систему уравнений (6). Прямые (6) пересекаются в том и только в том случае, когда

Вопрос

Расстояние от точки до прямой

Теорема. Если задана точка М(х0, у0), то расстояние до прямой Ах + Ву + С =0 определяется как

.

 

Доказательство. Пусть точка М 11, у 1) – основание перпендикуляра, опущенного из точки М на заданную прямую. Тогда расстояние между точками М и М1:

(1)

Координаты x1 и у1 могут быть найдены как решение системы уравнений:

Второе уравнение системы – это уравнение прямой, проходящей через заданную точку М 0 перпендикулярно заданной прямой.

Если преобразовать первое уравнение системы к виду:

A(x – x 0) + B(y – y0) + Ax0 + By0 + C = 0,

то, решая, получим:

Подставляя эти выражения в уравнение (1), находим:

Теорема доказана.

 

Пример. Определить угол между прямыми: y = -3 x + 7; y = 2 x + 1.

 

k 1 = -3; k 2 = 2; tgφ = ; φ= p /4.

 

Пример. Показать, что прямые 3х – 5у + 7 = 0 и 10х + 6у – 3 = 0 перпендикулярны.

 

Находим: k 1 = 3/5, k2 = -5/3, k 1* k 2 = -1, следовательно, прямые перпендикулярны.

 

Пример. Даны вершины треугольника А(0; 1), B (6; 5), C (12; -1). Найти уравнение высоты, проведенной из вершины С.

 

Находим уравнение стороны АВ: ; 4 x = 6 y – 6;

2 x – 3 y + 3 = 0;

Искомое уравнение высоты имеет вид: Ax + By + C = 0 или y = kx + b.

k = . Тогда y = . Т.к. высота проходит через точку С, то ее координаты удовлетворяют данному уравнению: откуда b = 17. Итого:.

Ответ: 3 x + 2 y – 34 = 0.

Вопрос

Окружность

Окружностью (рис.1) называется геометрическое место точек, равноудалённых от данной точки О, называемой центром окружности, на расстояние R. Число R > 0 называется радиусом окружности.

Уравнение окружности радиуса R с центром в точке О (х 0, у 0) имеет вид:

 

(хх 0 ) 2 + (уу 0 ) 2 = R 2.

Если центр окружности совпадает с началом координат, то уравнение окружности упрощается:

 

х 2 + у 2 = R 2.

 

Пусть Р (х 1, у 1) – точка окружности (рис.1), тогда уравнение касательной к окружности в данной точке имеет вид:

 

(х 1х 0 ) (хх 0 ) + (у 1у 0 ) (уу 0 ) = R 2.

 

Условие касания прямой y = m x + k и окружности х 2 + у 2 = R 2:

 

 

k 2 / (1 + m 2 )= R 2.

Вопрос

Эллипс

Эллипсом (рис.1) называется геометрическое место точек, сумма расстояний от которых до двух заданных точек F 1 и F 2 , называемых фокусами эллипса, есть величина постоянная.

Уравнение эллипса (рис.1):

Здесь начало координат является центром симметрии эллипса, а оси координат – его осями симметрии. При a > b фокусы эллипса лежат на оси ОХ (рис.1), при a < b фокусы эллипса лежат на оси ОY, а при a = b эллипс становится окружностью (фокусы эллипса в этом случае совпадают с центром окружности). Таким образом, окружность есть частный случай эллипса.

Отрезок F 1 F 2 = 2 с, где , называется фокусным расстоянием. Отрезок AB = 2 a называется большой осью эллипса, а отрезок CD = 2 bмалой осьюэллипса. Число e = c / a, e < 1 называется эксцентриситетом эллипса.

 

Пусть Р (х 1, у 1) – точка эллипса, тогда уравнение касательной к эллипсу в данной точке имеет вид:

Условие касания прямой y = m x + k и эллипса х 2 / a 2 + у 2 / b 2 = 1:

 

 

k 2 = m 2 a 2+ b 2.

Вопрос

Гипербола

Гиперболой (рис.1) называется геометрическое место точек, модуль разности расстояний от которых до двух заданных точек F 1 и F 2 , называемых фокусами гиперболы, есть величина постоянная.

Уравнение гиперболы (рис.1):

Здесь начало координат является центром симметрии гиперболы, а оси координат – её осями симметрии.

Отрезок F 1 F 2 = 2 с, где , называется фокусным расстоянием. Отрезок AB = 2 a называется действительной осью гиперболы, а отрезок CD = 2 bмнимой осьюгиперболы. Число e = c / a, e > 1 называется эксцентриситетомгиперболы. Прямые y = ± (b / a) x называются асимптотами гиперболы.

 

Пусть Р (х 1, у 1) – точка гиперболы, тогда уравнение касательной к гиперболе в данной точке имеет вид:

Условие касания прямой y = m x + k и гиперболы х 2 / a 2 у 2 / b 2 = 1:

 

 

k 2 = m 2 a 2b 2.

Вопрос

Парабола

Парабола (рис. 4.16)

Пусть на плоскости заданы точка F и прямая , не проходящая через F. Парабола - множество всех тех точек M плоскости, каждая из которых равноудалена от точки F и прямой . Точка F называется фокусом, прямая - директрисой параболы; (OF) - ось, O - вершина, - параметр, - фокус, - фокальный радиус.

Каноническое уравнение:

Эксцентриситет:

Фокальный радиус:

Уравнение директрисы:

Уравнение касательной в точке

Свойство касательной к параболе: (М - точка касания; N - точка пересечения касательной с осью Ox).

Уравнение нормали в точке

Уравнение диаметра, сопряженного хордам с угловым коэффициентом k: y = p/k.

Параметрические уравнения параболы:

Полярное уравнение:

Вопрос

Векторы в пространстве

Вектор - это направленный прямолинейный отрезок, т. е. отрезок, имеющий определенную длину и определенное направление. Если А — начало вектора, а В - его конец, то вектор обозначается символом АВ или а. Вектор ВА (у него начало в точке В, а конец в точке A) называется противоположным вектору АВ. Вектор, противоположный вектору а, обозначается - а.

Длиной или модулем вектора АВ называется длина отрезка и обозначается |АВ|. Вектор, длина которого равна нулю, называется нулевым вектором и обозначается 0. Нулевой вектор направления не имеет.

Вектор, длина которого равна единице, называется единичным вектором и обозначается через e. Единичный вектор, направление которого совпадает с направлением вектора a, называется ортом вектора a и обо значается a °.

Векторы а и b называются коллинеарными, если они лежат на одной прямой или на параллельных прямых; записывают a ||b.

Коллинеарные векторы могут быть направлены одинаково или противоположно.

Нулевой вектор считается коллинеарным любому вектору.

Два вектор а и b называются равными (а = b), если они коллинеарны, одинаково направлены и имеют одинаковые длины.

Из определения равенства векторов следует, что вектор можно переносить параллельно самому себе, а начало вектора помещать в любую точку О пространства.

На рисунке 1 векторы образуют прямоугольник. Справедливо равенство b =d, но а¹ с. Векторы а и с — противоположные, а =-с.

Равные векторы называют также свободными.

Три вектора в пространстве называются компланарными, если они лежат в одной плоскости или в параллельных плоскостях. Если среди трех векторов хотя бы один нулевой или два любые коллинеарны, то такие векторы компланарны


Поделиться с друзьями:

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.031 с.