Приближенное решение дифференциальных уравнений с помощью степенных рядов. — КиберПедия 

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Приближенное решение дифференциальных уравнений с помощью степенных рядов.

2017-11-17 556
Приближенное решение дифференциальных уравнений с помощью степенных рядов. 0.00 из 5.00 0 оценок
Заказать работу

Для многих типов дифференциальных уравнений не может быть найдено точное аналитическое решение. В этом случае дифференциальное уравнение можно решить с помощью приближенных методов, и, в частности, с помощью разложения в степенной ряд неизвестной функции.

Чтобы найти приближенное решение дифференциального уравнения в виде степенного ряда, в команде dsolve следует после переменных указать параметр type=series (или просто series). Для того, чтобы указать порядок разложения n, т.е. порядок степени, до которой производить разложение, следует перед командой dsolve вставить определение порядка с помощью команды Order:=n.

Если ищется общее решение дифференциального уравнения в виде разложения в степенной ряд, то коэффициенты при степенях х найденного разложения будут содержать неизвестные значения функции в нуле y(0) и ее производных D(y)(0), (D@@2)(y)(0) и т.д. Полученное в строке вывода выражение будет иметь вид, похожий на разложение искомого решения в ряд Маклорена, но с другими коэффициентами при степенях х. Для выделения частного решения следует задать начальные условия y(0)=у1, D(y)(0)=у2, (D@@2)(y)(0)=у3 и т.д., причем количество этих начальных условий должно совпадать с порядком соответствующего дифференциального уравнения.

Разложение в степенной ряд имеет тип series, поэтому для дальнейшей работы с этим рядом его следует преобразовать в полином с помощью команды convert(%,polynom), а затем выделить правую часть полученного выражения командой rhs(%).

 

Задание 2.5.

1. Найти решение задачи Коши: , в виде степенного ряда с точностью до 5-го порядка.

> restart; Order:=5:

> dsolve({diff(y(x),x)=y(x)+x*exp(y(x)),

y(0)=0}, y(x), type=series);

В полученном решении слагаемое означает, что точность разложения была до 5-го порядка.

2. Найти общее решение дифференциального уравнения y ''(х)- y 3(х)= е cos x, в виде разложения в степенной ряд до 4-го порядка. Найти разложение при начальных условиях: y (0)=1, y '(0)=0.

> restart; Order:=4: de:=diff(y(x),x$2)-

y(x)^3=exp(-x)*cos(x):

> f:=dsolve(de,y(x),series);

Замечание: в полученном разложении запись D(y)(0) обозначает производную в нуле: y '(0). Для нахождения частого решения осталось задать начальные условия:

> y(0):=1: D(y)(0):=0:f;

3. Найти приближенное решение в виде степенного ряда до 6-го порядка и точное решение задачи Коши: , , , . Построить на одном рисунке графики точного и приближенного решений.

> restart; Order:=6:

> de:=diff(y(x),x$3)-diff(y(x),x)=

3*(2-x^2)*sin(x);

de: =

> cond:=y(0)=1, D(y)(0)=1, (D@@2)(y)(0)=1;

cond:=y(0)=1, D(y)(0)=1, D(2)(y)(0)=1

> dsolve({de,cond},y(x));

y(x)=

> y1:=rhs(%):

> dsolve({de,cond},y(x), series);

y(x)=

Замечание: тип решения дифференциального уравнения в виде ряда есть series, поэтому для дальнейшего использования такого решения (вычислений или построения графика) его обязательно следует конвертировать в полином с помощью команды convert

> convert(%,polynom): y2:=rhs(%):

> p1:=plot(y1,x=-3..3,thickness=2,color=black):

> p2:=plot(y2,x=-3..3, linestyle=3,thickness=2,

color=blue):

> with(plots): display(p1,p2);

На этом рисунке видно, что наилучшее приближение точного решения степенным рядом достигается примерно на интервале -1< x <1.

 

 


Поделиться с друзьями:

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.01 с.