Источники и приемники излучения — КиберПедия 

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Источники и приемники излучения

2017-11-16 232
Источники и приемники излучения 0.00 из 5.00 0 оценок
Заказать работу

В качестве источников излучения используются светодиоды и полупроводниковые лазеры. Светодиоды (LED – Light Emitted Diode) являются некогерентными источниками, генерирующими излучение в некоторой непрерывной области спектра шириной 30-50 нм. Из-за значительной ширины диаграммы направленности их применяют только при работе с многомодовым волокном. Самые дешевые излучатели работают в диапазоне волн 850 нм (с них началась волоконная связь). Передача на более длинных волнах эффективнее, но технология изготовления излучателей на 1300 нм сложнее и они дороже.

Лазеры являются когерентными источниками, обладающими узкой спектральной шириной излучения (1-3 нм, в идеале – монохромные). Лазер дает узконаправленный луч, необходимый для одномодового волокна. Длина волны – 1300 или 1550 нм, осваиваются и более длинноволновые диапазоны. Быстродействие выше, чем у светодиодов. Лазер менее долговечен, чем светодиод, и более сложен в управлении. Мощность излучения сильно зависит от температуры, поэтому приходится применять обратную связь для регулировки тока. Лазерный источник чувствителен к обратным отражениям: отраженный луч, попадая в оптическую резонансную систему лазера, в зависимости от сдвига фаз может вызвать как ослабление, так и усиление выходного сигнала. Нестабильность уровня сигнала может приводить к неработоспособности соединения, поэтому требования к величине обратных отражений в линии для лазерных источников гораздо жестче. Лазерные источники применяются и для работы с многомодовым волокном (например, в технологии Gigabit Ethernet 1000Base-LX). Спектральные характеристики излучателей изображены на рис. 5.

Рис. 5 Спектральные характеристики излучателей: а – светодиод б – лазер

Детекторами излучения служат фотодиоды. Существует ряд типов фотодиодов, различающихся по чувствительности и быстродействию. Простейшие фотодиоды имеют низкую чувствительность и большое время отклика. Большим быстродействием обладают диоды, у которых время отклика измеряется единицами наносекунд при приложенном напряжении от единиц до десятков вольт. Лавинные диоды обладают максимальной чувствительностью, но требуют приложения напряжения в сотни вольт, и их характеристики сильно зависят от температуры. Зависимость чувствительности фотодиодов от длины волны имеет явно выраженные максимумы на длинах волн, определяемых материалом полупроводника. Самые дешевые кремниевые фотодиоды имеют максимальную чувствительность в диапазоне 800-900 нм, резко спадающую уже на 1000 нм. Для более длинноволновых диапазонов используют германий и арсенид индия и галлия.

На основе излучателей и детекторов выпускают готовые компоненты – передатчики, приемники и приемопередатчики. Эти компоненты имеют внешний электрический интерфейс ТТЛ или ЭСЛ. Оптический интерфейс – коннектор определенного типа, который часто устанавливают на отрезок волокна, приклеенный непосредственно к кристаллу излучателя или детектора.

Передатчик (transmitter) представляет собой излучатель со схемой управления. Основными оптическими параметрами передатчика являются выходная мощность, длина волны, спектральная ширина, быстродействие и долговечность. Мощность передатчиков указывают для конкретных типов волокон (чтобы в расчетах не учитывать диаграмму направленности, диаметр и апертуру излучателя).

Приемник (receiver) – это детектор с усилителем-формирователем. Приемник характеризуется диапазоном принимаемых волн, чувствительностью, динамическим диапазоном и быстродействием (полосой пропускания).

Поскольку в сетях всегда используется двунаправленная связь, выпускают и трансиверы (transceiver) – сборку передатчика и приемника с согласованными параметрами.

Топология соединений

Оптоволоконная передача допускает разнообразие топологий соединения устройств. Каждое устройство с оптическим портом, как правило, имеет приемник и передатчик каждый со своим коннектором. Наиболее простая и распространенная топология соединений – двухточечная (рис. 6, а). Здесь выход передатчика одного порта соединяется отдельным волокном с входом противоположного порта. Таким образом, для дуплексной связи необходимо два волокна. На основе двухточечного соединения строится и звездообразная топология (рис. 6, б), где каждый порт периферийного устройства соединяется парой волокон с отдельным портом центрального устройства, которое может быть как активным, так и пассивным.

В кольцевой топологии выход передатчика одного устройства соединяется с входом следующего и так далее до замыкания кольца. Для того чтобы устройства могли обмениваться информацией по кольцу, они все должны быть включены и исправны, что не всегда достижимо. Для возможности работы кольца при отключении отдельных устройств, применяют обходные коммутаторы (bypass switch).

Рис. 6 Топология соединений: а – двухточечная, б – звездообразная

Обходной (он же проходной) коммутатор представляет собой пассивное управляемое устройство, включаемое между линиями связи и коннекторами приемника и передатчика устройства. Он имеет поворотное зеркало с электрическим приводом. При наличии управляющего напряжения зеркало принимает такое положение, при котором станция включена в кольцо. При отсутствии управляющего напряжения зеркало поворачивается так, что кольцо замыкается, минуя станцию, и, кроме того, в тестовых целях приемник станции подключается к ее передатчику. Под пассивностью коммутатора подразумевается то, что он не имеет собственных приемников и передатчиков, а также усилительных схем.

С оптоволокном также возможна организация разделяемой среды передачи на чисто пассивных элементах-разветвителях. Разветвителъ (coupler) представляет собой многопортовое устройство для распределения оптической мощности (здесь под портом понимается точка подключения волокна). Световая энергия, поступающая на один из портов, распределяется между другими портами в заданном соотношении. В реальном разветвителе присутствуют и различные потери, так что сумма выходных мощностей будет меньше входной. Разветвители реализуются с помощью сварки узла из нескольких волокон или с помощью направленных отражателей.

Т-разветвителъ имеет 3 порта, такие разветвители можно соединять в цепь, реализуя шинную топологию с разделяемым доступом к среде передачи (рис. 7, а). Для того чтобы в цепочку можно было соединять значительное количество абонентов, разветвители должны большую часть мощности пропускать насквозь, а к абонентам ответвлять меньшую. Абоненты, имеющие раздельные коннекторы приемников и передатчиков, должны подключаться к шине через дополнительные разветвители. В такой сети потери между абонентами сильно зависят от их взаимного расположения в цепочке, в результате чего повышаются требования к ширине динамического диапазона приемников. С ростом количества абонентов потери (в децибелах) растут линейно.

   
  Рис. 7Применение T-разветвителей: а – оптическая шина, б – двухточечное соединение

Рис. 8 График зависимости потерь от числа абонентов

В разветвителе “звезда” свет, входящий в любой порт, равномерно распределяется между всеми остальными. На основе такого разветвителя может строиться сеть с разделяемой средой передачи и звездообразной топологией. Здесь рост потерь с увеличением числа узлов происходит гораздо медленнее, но расплатой является большая потребность в оптическом кабеле — от каждого абонента к разветвителю идет пара волокон. На рис. 8 приведены графики потерь для сетей с идеальными (без внутренних потерь) и реальными разветвителями обоих типов.

Оптоволоконные кабели

Оптоволокно само по себе очень хрупкое и для использования требует дополнительной защиты от внешних воздействий. Кабели, применяемые в сетях, используют одномодовые и многомодовые волокна с номинальным диаметром оболочки 125 мкм в покрытии с наружным диаметром 250 мкм, которые могут быть заключены и в 900-мкм буфер. Оптический кабель состоит из одного или нескольких волокон, буферной оболочки, силовых элементов и внешней оболочки. В зависимости от внешних воздействий, которым должен противостоять кабель, эти элементы выполняются по-разному.

По количеству волокон кабели подразделяют на симплексные (одножильные), дуплексные (2 волокна) и многожильные (от 4 до нескольких сотен волокон). В многожильных кабелях обычно применяются однотипные волокна, хотя производители кабеля под заказ могут комплектовать его и разнотипными (ММ и SM) волокнами. Ориентировочные значения основных параметров волокон приведены в табл. 1. Наиболее популярно многомодовое волокно 62,5/125, однако его полосы пропускания на волнах 850 нм недостаточно для организации длинных магистралей Gigabit Ethernet. Волокно 100/140, указанное в спецификации Token Ring, применяется ограниченно. Из одномодовых больше распространено волокно 9,5/125.

Таблица 1. Основные параметры оптических волокон

ВОЛОКНО ЗАТУХАНИЕ, дБ/км ПОЛОСА ПРОПУСКАНИЯ, МГц*км АПЕРТУРА  
мкм/мкм 850 нм 1300 нм 1550 нм 850 нм 1300 нм NA
8/125, 9,5/125 - 0,35 0,22 - - 0,1
50/125 2,7-3,5 0,7-2,0 - 400-500 400-500 0,20
62,5/125 2,7-3,5 0,7-1,5 - 160-200 400-500 0,275
100/140 5,0 4,0 -     0,29

Волокна характеризуются и более подробными геометрическими параметрами (допуски диаметров, эксцентриситет, некруглость), но их приводят не во всех спецификациях и в практических расчетах они не фигурируют.

Буфер отделяет волокно от остальных элементов кабеля и является первой ступенью защиты волокна. Буфер может быть плотным или пустотелым. Плотный буфер (tight buffer) заполняет все пространство между покрытием и внешней оболочкой кабеля. Простейшим плотным буфером является 900-мкм защитное покрытие волокна. Плотный буфер обеспечивает хорошую защиту волокна от давления и ударов, кабель в плотном буфере имеет небольшой диаметр и допускает изгиб с относительно небольшим радиусом. Недостатком плотного буфера является чувствительность кабеля к изменению температуры: из-за разницы в коэффициентах теплового расширения волокна (малый) и буфера (большой) при охлаждении буфер будет «съеживаться», что может вызвать микроизгибы волокна. Кабель с плотным буфером применяют в основном для разводки внутри помещений и изготовления коммутационных шнуров.

В кабеле с пустотелым буфером (loose tube) волокна свободно располагаются в полости буфера — жесткой пластиковой трубки, а оставшееся пространство может быть заполнено гидрофобным гелем. Такая конструкция более громоздка, но обеспечивает большую устойчивость к растяжению и изменениям температуры. Здесь волокна имеют длину большую, чем длина кабеля, поэтому деформации оболочки не затрагивают само волокно. В зависимости от назначения и числа волокон профиль буфера может иметь различную форму.

Силовые элементы обеспечивают требуемую механическую прочность кабеля, принимая на себя растягивающие нагрузки. В качестве силовых элементов используют кевларовые нити, стальные стержни, стренги из скрученной стальной проволоки, стеклопластиковые стержни. Самую высокую прочность имеет стальная проволока, но для полностью непроводящих кабелей она неприменима.

Внешняя оболочка защищает всю конструкцию кабеля от влаги, химических и механических воздействий. Кабели для тяжелых условий эксплуатации могут иметь многослойную оболочку, включающую и бронирующую рубашку из стальной ленты или проволоки. Материал внешней оболочки определяет защищенность кабеля от тех или иных воздействий, а также горючесть кабеля и токсичность выделяемого дыма.

В локальных сетях применяют кабели наружной, внутренней и универсальной прокладки. Наружные (outdoor) кабели отличаются лучшей защищенностью от внешних воздействий и более широким диапазоном допустимых температур. Однако по противопожарным нормам их не разрешается использовать внутри помещения, поскольку при горении они выделяют токсичный дым. По этой причине длина прокладки такого кабеля внутри помещения ограничивается 15 м — далее должна быть распределительная коробка, в которой этот кабель стыкуется с внутренним.

Внутренний (indoor) кабель, как правило, менее защищен, но и менее опасен при возгорании. Универсальный (indoor/outdoor) кабель сочетает в себе защищенность и безвредность, но, как правило, он дороже специализированного.

Распределительный (distribution) кабель состоит из множества волокон (часто в 900-мкм буфере), его разделывают в распределительных коробках и панелях, корпуса которых защищают волокна от механических воздействий.

В общих спецификациях на оптический кабель указывают, следующие параметры (приводятся без обозначений, в силу неоднозначностей разных классификаций):

назначение кабеля, его защищенность, наличие электропроводящих элементов, возможные способы прокладки;

тип и количество волокон;

диапазон рабочих температур, отдельно может указываться для прокладки и эксплуатации;

допустимое растягивающее усилие;

минимальный радиус изгиба, постоянного и кратковременного;

максимальное раздавливающее усилие;

для самонесущих кабелей – длина пролета и стрела провиса;

внешний диаметр;

погонный вес;

материал внешней оболочки и/или характеристики горючести.

Оптический кабель требует особо бережного отношения при прокладке. Если для медного кабеля нарушение предельно допустимых параметров (усилия, радиус изгиба) приводит, как правило, только к ухудшению характеристик (до обрыва проводников дело доходит редко), то такие «вольности» с оптическим кабелем могут приводить к разрыву (излому) волокна. Для обнаженного волокна особенно опасно сочетание растяжения и изгиба, в кабелях с пустотелым буфером воздействие на волокно смягчается.

Оптический кабель чувствителен к перепадам температур, от которых волокно может трескаться. Для кабелей, выходящих из помещения, нужно принимать во внимание и воздействие градиента температуры: он определяется через разницу температур, которая зимой может достигать и 50-60 °С, и толщину стен. Если градиент выше допустимого, волокно может треснуть.

Для работы в условиях высокого уровня радиации требуется специальный кабель. От высокого уровня радиации волокно может мутнеть, в результате чего возрастет затухание сигнала в кабеле. Сверхмощное облучение (ядерный взрыв) приводит к резкому возрастанию затухания, которое экспоненциально снижается до допустимого за время, исчисляемое десятками минут.

Оптические соединители

Оптические соединители предназначены для постоянного или временного, разъемного или неразъемного соединения волокон. Основные параметры соединителя – вносимые потери и уровень обратного отражения. Для минимизации потерь необходимо точное взаимное позиционирование соединяемых волокон, что особенно сложно достичь для одномодовых волокон. Важной характеристикой соединителей является диапазон рабочих температур – тепловое расширение компонентов соединителя влияет на точность позиционирования со всеми вытекающими последствиями. Качество соединений сильно связано со стоимостью соединителей или необходимого оборудования, поэтому идеального соединителя на все случаи жизни нет.

Неразъемные соединители

Самое лучшее постоянное неразъемное соединение волокон обеспечивает сварка – вносимые потери < 0,05 дБ (типовое значение 0,01 дБ для ММ и 0,02 дБ для SM), обратные отражения < -60 дБ. Перед сваркой волокна освобождают от защитного буфера и специальным инструментом скалывают кончики. Качественно выполненная операция обеспечивает довольно гладкую поверхность скола, перпендикулярную к оси волокна. Подготовленные концы закрепляют в сварочном аппарате, который осуществляет точное позиционирование волокон по трем координатам. Позиционирование выполняется автоматически или вручную, под наблюдением через микроскоп. После точного совмещения стык сваривается электрической дугой. Место сварки из-за внутренних напряжений становится довольно хрупким. От излома его защищают специальной термоусадочной трубочкой, которую надевают на один из концов до сварки, а потом надвигают на стык и нагревают. Главный недостаток сварки –zнеобходимость использования дорогого оборудования и источника электроэнергии на месте работы. Сварка в основном применяется при прокладке длинных линий, где большое количество стыков ставит жесткие ограничения на вносимое затухание и надежность соединения.

Для неразъемного (постоянного или временного) соединения волокон без использования сварки применяют механические соединители – сплайсы (splice). Сплайсы фиксируют волокна в требуемом положении и обычно допускают многоразовое использование.

Разъемные соединители

Для разъемного соединения двух волокон на их концы устанавливают коннекторы (connector), они же вилки, которые вставляют в соединительные розетки (receptacle), изображенные на рис. 9.

Коннектор имеет два функциональных элемента – корпус 1 и наконечник 2. Наконечник (ferrule), закрепляемый на волокне, обеспечивает его центровку в розетке. От материала, из которого изготовлен наконечник, зависит качество коннектора – уровень вносимых потерь. Лучшим материалом считается керамика – допуски при ее обработке минимальны, затем идет нержавеющая сталь, самые дешевые коннекторы имеют пластмассовый наконечник. Волокно закрепляется в наконечнике либо с помощью эпоксидного клея (традиционный способ), либо с помощью обжима соответствующей детали коннектора. Выступающий кончик волокна скалывают и полируют. Полировка необходима для того, чтобы стыкуемые волокна в наконечниках могли как можно ближе придвигаться друг к другу, а шероховатости поверхностей не вносили бы дополнительных потерь. Наконечник закрепляется в корпусе коннектора либо неподвижно, либо относительно свободно. Корпус обеспечивает закрепление кабеля и фиксацию коннектора в розетке. “Плавающее” закрепление наконечника защищает сам оптический стык от механических воздействий на корпус коннектора и кабель.

   
  Рис. 9 Разъемное соединение

Розетка состоит из корпуса и центрирующей вставки. Корпус розетки 3 обеспечивает ее крепление на панели и фиксацию коннекторов. Вставка 4 обеспечивает точное взаимное позиционирование наконечников коннекторов. Материал вставки – керамика или бронза – влияет на качество соединителя, им определяется точность позиционирования наконечников.

По типу соединяемых волокон разъемы делятся на одномодовые и многомодовые. Для одномодовых требуется более высокая точность позиционирования (из-за малого диаметра сердцевины волокна). Здесь для наконечников коннекторов и центрующих вставок розеток обычно используют керамику, которую можно обрабатывать с меньшими допусками. В таких коннекторах часто применяют “плавающий” наконечник, чтобы внешние механические воздействия не приводили к нарушению позиционирования. Некоторые типы коннекторов выпускают с внутренним диаметром наконечника 125, 126 и 127 мкм, что связано с допуском на наружный диаметр оболочки волокна. При сборке таких коннекторов подбирают наконечник с минимальным диаметром, который удается надеть на конкретное волокно. Этим достигается наибольшая точность центровки. Для снижения уровня обратных отражений применяют наконечники с полировкой PC и АРС. По этим причинам одномодовые коннекторы дороже многомодовых вариантов коннекторов того же типа. Одномодовые коннекторы можно использовать и для многомодового волокна, но это слишком дорого.

Цветовая маркировка (по TIA/EIA-568A): многомодовые коннекторы и адаптеры (розетки) – бежевые, одномодовые — синие.

По количеству соединяемых волокон коннекторы делятся на одинарные (симплексные), дуплексные (двойные) и многоканальные.

В оптических коннекторах используются разные механизмы фиксации. Поворотные фиксаторы — байонетные (ST) или винтовые (FC) — не позволяют получать дуплексные конструкции с высокой плотностью портов. Гораздо удобнее фиксация “тяни-толкай” (push-pull), применяемая в разъемах SC (одиночных и дуплексных).

Типы коннекторов

В отличие от электрических разъемов, из которых в сетях применяется в основном один тип (RJ-45), оптических коннекторов существует великое множество, что не способствует удешевлению оптических технологий. Разъемы различаются размерами, формой, способом фиксации коннектора, количеством соединяемых волокон, простотой установки и требуемым для этого инструментом. При кажущейся простоте этих изделий они имеют высокую цену, обусловленную необходимостью применения прецизионной механической обработки деталей из специальных материалов для получения стабильных и повторяемых характеристик при работе в заданном диапазоне температур с гарантированным числом циклов соединений.

Коннекторы ST – одиночные, с байонетной фиксацией, диаметр наконечника 2,5 мм. Потери 0,2-0,3 дБ. Технология установки – клеевая или обжимная. Стандартами СКС допускаются, если уже используются в существующих линиях, но не рекомендуются для новых инсталляций.

Коннекторы ХТС – вариант ST с технологией обжима Light Crimp (только для ММ).

Коннекторы SC и SC Duplex – одиночные и дуплексные, диаметр наконечника 2,5 мм. Потери 0,2-0,3 дБ. В дуплексном варианте два одиночных коннектора объединяются общим зажимом или соединяются защелками. Фиксация “тяни-толкай”. Технология установки – клеевая или обжимная (Light-Crimp – только для ММ). Стандарты СКС рекомендуют этот тип для использования в кабельной сети здания.

Коннекторы FC и FC/PC – одиночные, с резьбовой фиксацией, диаметр наконечника 2,5 мм. Потери 0,2-0,3 дБ. Наконечник “плавает” относительно корпуса и оболочки кабеля. Устойчивы к вибрациям и ударам. Эффективны для SM-волокна, применяются в бортовых системах, кабельном телевидении, дальней связи.

Коннекторы FDDI – дуплексные, диаметр наконечника 2,5 мм. Фиксация с помощью двух боковых пружинящих защелок. Коннектор довольно громоздкий и дорогой. В основном применяется в аппаратуре FDDI. Система ключей предотвращает неправильное использование портов.

Рассмотренные выше коннекторы по сравнению с электрическими довольно громоздки, они не позволяют обеспечить высокую плотность портов на распределительных панелях и активном оборудовании. В TIA/EIA при разработке новой редакции стандарта 568 была предпринята попытка покончить с многообразием коннекторов и определить единый малогабаритный абонентский дуплексный соединитель, вписывающийся в габариты малогабаритной розетки RJ-45. Однако принять единый из нижеследующих так и не удалось.

Коннектор MT-RJ – малогабаритный дуплексный, имеет двухволоконный наконечник с закрепленными и отполированными фрагментами волокна. Фиксируется защелкой, предназначен для проводки внутри здания. Для оконцовки необходимо лишь зачистить кабель, сколоть волокна и зафиксировать их, как в сплайсе CoreLink. Выпускается для одномодовых и многомодовых (50/125 и 62,5/ 125) волокон. Уровень обратных отражений -44 дБ.

Коннектор OptiSPEED LC – улучшенный малогабаритный дуплексный вариант SC. Фиксация аналогична RJ-45. Потери 0,1-0,2 дБ, обратные отражения -20 дБ для ММ и -40 дБ для SM.

Коннектор OPTI-JACK – дуплексный, диаметр наконечника 2,5 мм, фиксация аналогична RJ-45. Потери 0,19 дБ SM и 0,16 дБ ММ, обратные отражения -20 дБ для ММ и -(40-45) дБ для SM.

Коннектор SCDC и SCQC – дуплексный и 4-канальный, наконечники 2,5 мм, фиксация аналогично SC.

Коннектор VF-45 – дуплексный, для выравнивания волокон используется V-образный профиль. Дешевый и простой в установке, потери 0,3 дБ, обратные отражения -20 дБ.


Поделиться с друзьями:

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.057 с.