Жидкокристаллические мониторы — КиберПедия 

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Жидкокристаллические мониторы

2017-09-26 302
Жидкокристаллические мониторы 0.00 из 5.00 0 оценок
Заказать работу

Жидкокристаллический дисплей (ЖК-дисплей, ЖКД; жидкокристаллический индикатор, ЖКИ; англ. l iquid c rystal d isplay, LCD) — плоский дисплей на основе жидких кристаллов, а также устройство (монитор, телевизор) на основе такого дисплея.

Простые приборы с дисплеем (электронные часы, телефоны, плееры, термометры и пр.) могут иметь монохромный или 2—5-цветныйдисплей. Многоцветное изображение формируется с помощью RGB-триад.

Дисплей на жидких кристаллах используется для отображения графической или текстовой информации в компьютерных мониторах(также и в ноутбуках), телевизорах, телефонах, цифровых фотоаппаратах, электронных книгах, навигаторах, планшетах, электронных переводчиках, калькуляторах, часах и т. п., а также во многих других электронных устройствах.

На 2008 год в большинстве настольных мониторов на основе TN- (и некоторых *VA) матриц, а также во всех дисплеях ноутбуков используются матрицы с 18-битным цветом (6 бит на каждый RGB-канал), 24-битность эмулируется мерцанием с дизерингом.

LCD TFT (англ. t hin f ilm t ransistor — тонкоплёночный транзистор) — разновидность жидкокристаллического дисплея, в котором используется активная матрица, управляемая тонкоплёночными транзисторами.

В 70-х годах ХХ столетия компанией Radio corporation of America был впервые представлен жидкокристаллический монохромный экран. Эффект жидкокристаллических дисплеев начал использоваться в электронных часах, калькуляторах, измерительных приборах. Потом стали появляться матричные дисплеи, воспроизводящие черно-белое изображение. В 1987 году компания Sharp разработала первый цветной жидкокристаллический дисплей диагональю 3 дюйма.

Гигантский скачок в развитии этой технологии произошел с появлением первых ноутбуков. Сначала матрицы были чёрно-белыми, потом цветными, но только «пассивного» типа. Они довольно сносно отображали статические изображения и рабочий стол ноутбука, но при малейшем движении «картинка» превращалась в сплошную мазню — на экране невозможно было что-либо разобрать. Естественно, это ограничивало сферы использования нового типа дисплеев. Дальнейшая эволюция жидкокристаллических матриц привела к созданию нового их типа — «активного». Такие дисплеи уже лучше справлялись с отображением на экране движущихся объектов, и это способствовало появлению стационарных мониторов. В начале ХХI столетия появились первые ЖК-телевизоры. Диагональ их была ещё маленькой — около 15 дюймов.

 

Технические характеристики

Важнейшие характеристики ЖК-дисплеев:

· тип матрицы определяется технологией, по которой изготовлен ЖК-дисплей;

· класс матрицы; стандарт ISO 13406-2 выделяет четыре класса матриц;

· разрешение — горизонтальный и вертикальный размеры, выраженные в пикселях. В отличие от ЭЛТ-мониторов, ЖК имеют одно фиксированное разрешение, остальные достигаются интерполяцией. (ЭЛТ-мониторы также имеют фиксированное количество пикселей, которые также состоят из красных, зеленых и синих точек. Однако из-за особенностей технологии при выводе нестандартного разрешения в интерполяции нет необходимости);

· размер точки (размер пикселя) — расстояние между центрами соседних пикселей. Непосредственно связан с физическим разрешением;

· соотношение сторон экрана (пропорциональный формат) — отношение ширины к высоте (5:4, 4:3, 3:2 (15÷10), 8:5 (16÷10), 5:3 (15÷9), 16:9 и др.);

· видимая диагональ — размер самой панели, измеренный по диагонали. Площадь дисплеев зависит также от формата: монитор с форматом 4:3 имеет большую площадь, чем с форматом 16:9 при одинаковой диагонали;

· контрастность — отношение яркостей самой светлой и самой тёмной точек при заданной яркости подсветки. В некоторых мониторах используется адаптивный уровень подсветки с использованием дополнительных ламп, приведённая для них цифра контрастности (так называемая динамическая) не относится к статическому изображению;

· яркость — количество света, излучаемое дисплеем (обычно измеряется в канделах на квадратный метр);

· время отклика — минимальное время, необходимое пикселю для изменения своей яркости. Составляется из двух величин:

· время буферизации (input lag). Высокое значение мешает в динамичных играх; обычно умалчивается; измеряется сравнением с кинескопом в скоростной съёмке. Сейчас (2011) в пределах 20—50 мс; в отдельных ранних моделях достигало 200 мс;

· время переключения. Указывается в характеристиках монитора. Высокое значение ухудшает качество видео; методы измерения неоднозначны. Сейчас практически во всех мониторах заявленное время переключения составляет 2—6 мс;

· угол обзора — угол, при котором падение контраста достигает заданного, для разных типов матриц и разными производителями вычисляется по-разному, и часто не подлежит сравнению. Некоторые производители указывают в тех. параметрах своих мониторов углы обзора такие к примеру как: CR 5:1 — 176/176°, CR 10:1 — 170/160°. Аббревиатура CR (англ. contrast ratio) обозначает уровень контрастности при указанных углах обзора относительно перпендикуляра к экрану. При углах обзора 170°/160° контрастность в центре экрана снижается до значения не ниже чем 10:1, при углах обзора 176°/176° — не ниже чем до значения 5:1.

 

Все шире используются наряду с традиционными ЭЛТ-мониторами. Жидкие кристаллы — это особое состояние некоторых органических веществ, в котором они обладают текучестью и свойством образовывать пространственные структуры, подобные кристаллическим. Жидкие кристаллы могут изменять свою структуру и светооптические свойства под действием электрического напряжения. Меняя с помощью электрического поля ориентацию групп кристаллов и используя введённые в жидкокристаллический раствор вещества, способные излучать свет под воздействием электрического поля, можно создать высококачественные изображения, передающие более 15 миллионов цветовых оттенков.

Большинство ЖК-мониторов использует тонкую плёнку из жидких кристаллов, помещённую между двумя стеклянными пластинами. Заряды передаются через так называемую пассивную матрицу — сетку невидимых нитей, горизонтальных и вертикальных, создавая в месте пересечения нитей точку изображения (несколько размытого из-за того, что заряды проникают в соседние области жидкости).

Активные матрицы вместо нитей используют прозрачный экран из транзисторов и обеспечивают яркое, практически не имеющее искажений изображение. Экран при этом разделен на независимые ячейки, каждая из которых состоит из четырех частей (для трёх основных цветов и одна резервная). Количество таких ячеек по широте и высоте экрана называют разрешением экрана. Современные ЖК-мониторы имеют разрешение 642х480, 1280х1024 или 1024х768. Таким образом, экран имеет от 1 до 5 млн точек, каждая из которых управляется собственным транзистором.

Преимущества ЖК мониторов:

  • по компактности такие мониторы не знают себе равных. Они занимают в 2 — 3 раза меньше места, чем мониторы с ЭЛТ и во столько же раз легче;
  • потребляют гораздо меньше электроэнергии;
  • не излучают электромагнитных волн, воздействующих на здоровье людей.

 

Плазменные мониторы

 

Схема плазменной панели представлена на рисунке:

Проводники нанесены на две стеклянные пластины (отдельно – горизонтальные и вертикальные проводники). Пространство между пластинами заполнено инертным газом, который начинает светиться, как только к проводникам прикладывается напряжение переменного тока, превышающее некоторое пороговое значение. Для локализации свечения между пластинами помещается третья с круглыми отверстиями.

Пикcел – это воображаемая точка, полученная на пересечении проводников на двух пластинах. Номера проводников есть координаты этой точки, которые используются для генерации в ней изображения.

 

 

Жидкокристаллический дисплей (ЖК-дисплей, ЖКД; жидкокристаллический индикатор, ЖКИ; англ. Liquid crystal display, LCD) — плоский дисплей на основе жидких кристаллов, а также устройство (монитор, телевизор) на основе такого дисплея.

Дисплей на жидких кристаллах используется для отображения графической или текстовой информации в компьютерных мониторах (также и в ноутбуках), телевизорах, телефонах, цифровых фотоаппаратах, электронных книгах, навигаторах, планшетах, электронных переводчиках, калькуляторах, часах и т. п., а также во многих других электронных устройствах.

LCD TFT (англ. Thin film transistor — тонкоплёночный транзистор) — разновидность жидкокристаллического дисплея, в котором используется активная матрица, управляемая тонкоплёночными транзисторами.

Все шире используются наряду с традиционными ЭЛТ-мониторами. Жидкие кристаллы — это особое состояние некоторых органических веществ, в котором они обладают текучестью и свойством образовывать пространственные структуры, подобные кристаллическим. Жидкие кристаллы могут изменять свою структуру и светооптические свойства под действием электрического напряжения. Меняя с помощью электрического поля ориентацию групп кристаллов и используя введённые в жидкокристаллический раствор вещества, способные излучать свет под воздействием электрического поля, можно создать высококачественные изображения, передающие более 15 миллионов цветовых оттенков.

Большинство ЖК-мониторов использует тонкую плёнку из жидких кристаллов, помещённую между двумя стеклянными пластинами. Заряды передаются через так называемую пассивную матрицу — сетку невидимых нитей, горизонтальных и вертикальных, создавая в месте пересечения нитей точку изображения (несколько размытого из-за того, что заряды проникают в соседние области жидкости).

Активные матрицы вместо нитей используют прозрачный экран из транзисторов и обеспечивают яркое, практически не имеющее искажений изображение. Экран при этом разделен на независимые ячейки, каждая из которых состоит из четырех частей (для трёх основных цветов и одна резервная). Количество таких ячеек по ширине и высоте экрана называют разрешением экрана. Современные ЖК-мониторы имеют разрешение 642х480, 1280х1024 или 1024х768. Таким образом, экран имеет от 1 до 5 млн точек, каждая из которых управляется собственным транзистором.

Преимущества ЖК мониторов:

  • по компактности такие мониторы не знают себе равных. Они занимают в 2 — 3 раза меньше места, чем мониторы с ЭЛТ и во столько же раз легче;
  • потребляют гораздо меньше электроэнергии;
  • не излучают электромагнитных волн, воздействующих на здоровье людей.

Технические характеристики

Важнейшие характеристики ЖК-дисплеев:

· Тип матрицы — технология, по которой изготовлен ЖК-дисплей.

· Класс матрицы — по ISO 13406-2 подразделяются на четыре класса.

· Разрешение — горизонтальный и вертикальный размеры, выраженные в пикселях. В отличие от ЭЛТ-мониторов, ЖК имеют одно фиксированное разрешение, остальные достигаютсяинтерполяцией. (ЭЛТ-мониторы также имеют фиксированное количество пикселей, которые также состоят из красных, зеленых и синих точек. Однако из-за особенностей технологии при выводе нестандартного разрешения в интерполяции нет необходимости).

· Размер точки (размер пикселя) — расстояние между центрами соседних пикселей. Непосредственно связан с физическим разрешением.

· Соотношение сторон экрана (пропорциональный формат) — отношение ширины к высоте (5:4, 4:3, 3:2 (15÷10), 8:5 (16÷10), 5:3 (15÷9), 16:9 и др.)

· Видимая диагональ — размер самой панели, измеренный по диагонали. Площадь дисплеев зависит также от формата: монитор с форматом 4:3 имеет большую площадь, чем с форматом 16:9 при одинаковой диагонали.

· Контрастность — отношение яркостей самой светлой и самой тёмной точек при заданной яркости подсветки. В некоторых мониторах используется адаптивный уровень подсветки с использованием дополнительных ламп, приведённая для них цифра контрастности (так называемая динамическая) не относится к статическому изображению.

· Яркость — количество света, излучаемое дисплеем, обычно измеряется в канделах на квадратный метр.

· Время отклика — минимальное время, необходимое пикселю для изменения своей яркости. Составляется из двух величин:

· Время буферизации (input lag). Высокое значение мешает в динамичных играх; обычно умалчивается; измеряется сравнением с кинескопом в скоростной съёмке. Сейчас (2011) в пределах 20—50 мс; в отдельных ранних моделях достигало 200 мс.

· Время переключения — именно оно указывается в характеристиках монитора. Высокое значение ухудшает качество видео; методы измерения неоднозначны. Сейчас практически во всех мониторах заявленное время переключения составляет 2—6 мс.

· Угол обзора — угол, при котором падение контраста достигает заданного, для разных типов матриц и разными производителями вычисляется по-разному, и часто не подлежит сравнению. Некоторые производители указывают в тех. параметрах своих мониторов углы обзора такие к примеру как: CR 5:1 — 176/176°, CR 10:1 — 170/160°. Аббревиатура CR (contrast ratio) обозначает уровень контрастности при указанных углах обзора относительно перпендикуляра к экрану. При углах обзора 170°/160° контрастность в центре экрана снижается до значения не ниже чем 10:1, при углах обзора 176°/176° — не ниже чем до значения 5:1.

 

Плазменные мониторы

Газоразрядный экран (также широко применяется английская калька «плазменная панель») — устройство отображения информации, монитор, основанный на явлении свечения люминофора под воздействием ультрафиолетовых лучей, возникающих при электрическом разряде в ионизированном газе, иначе говоря в плазме.

 

Схема плазменной панели представлена на рисунке:

Проводники нанесены на две стеклянные пластины (отдельно – горизонтальные и вертикальные проводники). Пространство между пластинами заполнено инертным газом, неоном или ксеноном (реже используется гелий и/или аргон, или, чаще, их смеси)).который начинает светиться, как только к проводникам прикладывается напряжение переменного тока, превышающее некоторое пороговое значение. Для локализации свечения между пластинами помещается третья с круглыми отверстиями.

Пикcел – это воображаемая точка, полученная на пересечении проводников на двух пластинах. Номера проводников есть координаты этой точки, которые используются для генерации в ней изображения.

Преимущества и недостатки

Преимущества:

· высокая контрастность;

· глубина цветов;

Недостатки:

· недолговечность(в среднем 30000 часов, выгорание дисплея, как следствие высоких рабочих температур, особенно видна пикселизация при отклонении по вертикали угла обзора, что также происходит за счет выделения большого количества тепла.)

 

  1. OLED – мониторы (Светодиодный графический экран)

 

Светодиодный экран (LED screen, LED display) — устройство отображения и передачи визуальной информации, в котором каждой точкой, пикселем (pix) является один или несколько полупроводниковых светодиодов. Аббревиатура LED означает «светодиод» (Light Emitting Diode).

Преимущества и недостатки

В отличие от других технологий (напр., Блинкерное табло), светодиодные экраны обладают некоторыми преимуществами:

· Высокая яркость.

· Возможность сборки экрана больших размеров (до сотен метров в ширину и высоту).

· Произвольное соотношение высота/ширина.

· Надёжность (повреждение части экрана не ведёт к его неработоспособности в целом).

К неоспоримым преимуществам можно отнести возможность уличного круглогодичного использования таких видеоэкранов.

К недостаткам можно отнести:

· Довольно большой размер зерна у экрана.

· Зачастую весьма низкое разрешение экрана.

· Сложность самостоятельной сборки.

· Высокая стоимость.

Применение

Светодиодные экраны получают всё большее распространение — всё чаще используются в целях рекламы на улицах крупных городов или в качестве информационных экранов и дорожных знаков. Эксперты развития рынка рекламы сходятся в едином мнении о том, что с каждым годом доля светодиодных информационных экранов на рынке рекламных технологий будет только возрастать. Действительно, полноцветные светодинамические табло сочетают в себе все основные преимущества существующих визуальных рекламных технологий. Единственным их недостатком может считаться довольно высокая стоимость по сравнению с другими технологиями рекламы.

LED-телевизоры

Возможно, первый настоящий светодиодный экран для телевизора был разработан, продемонстрирован и документально описан Дж. П.Митчеллом в 1977 году. Модель 1977 года была монохроматической и не могла конкурировать с цветными телевизорами того времени.

Лишь после создания достаточно ярких цветных светодиодов появились первые цветные LED-телевизоры. Самый большой в мире светодиодный телевизор находится на стадионе Ковбойз в Арлигтоне, штат Техас, США. Его размеры 49 × 22 метров, плошадь 1070 квадратных метров. (Существуют светодиодные дисплеи и гораздо больших размеров, но они не предназначены для телевидения.)

Главный недостаток телевизоров на полупроводниковых светодиодах — большой размер. Дисплей состоит из сотен тысяч светодиодов, и пока не удалось изготовить полупроводниковый светодиод микроскопических размеров, пригодный для телевидения и имеющий приемлемую цену.

В XXI веке получили распространение дисплеи на органических светодиодах (OLED), но они пока имеют противоположный недостаток — слишком малый размер.

В торговле нередко "LED-телевизорами" (LED TV) называют телевизоры, имеющие ЖК-экран со светодиодной подсветкой. Несмотря на схожее название, к описываемым в данной статье светодиодным экранам они отношения не имеют.

 

 

Принтеры

Принтер — печатающее устройство. Осуществляет вывод из компьютера закодированной информации в виде печатных копий текста или графики.

Различают три основных вида принтеров: матричные, лазерные и струйные.

· Матричные принтеры используют комбинации маленьких штырьков, которые бьют по красящей ленте, благодаря чему на бумаге остаётся отпечаток символа. Каждый символ, печатаемый на принтере, формируется из набора 9, 18 или 24 игл, сформированных в виде вертикальной колонки. Недостатками этих недорогих принтеров являются их шумная работа и невысокое качество печати.

· Лазерные принтеры работают примерно так же, как ксероксы. Компьютер формирует в своей памяти "образ" страницы текста и передает его принтеру. Информация о странице проецируется с помощью лазерного луча на вращающийся барабан со светочувствительным покрытием, меняющим электрические свойства в зависимости от освещённости.

После засветки на барабан, находящийся под электрическим напряжением, наносится красящий порошок — тонер, частицы которого налипают на засвеченные участки поверхности барабана. Принтер с помощью специального горячего валика протягивает бумагу под барабаном; тонер переносится на бумагу и "вплавляется" в неё, оставляя стойкое высококачественное изображение. Цветные лазерные принтеры пока очень дороги.

· Струйные принтеры генерируют символы в виде последовательности чернильных точек. Печатающая головка принтера имеет крошечные сопла, через которые на страницу выбрызгиваются быстросохнущие чернила. Эти принтеры требовательны к качеству бумаги. Цветные струйные принтеры создают цвета, комбинируя чернила четырех основных цветов — ярко-голубого, пурпурного, желтого и черного.

3D-печать может осуществляться разными способами и с использованием различных материалов, но в основе любого из них лежит принцип послойного создания (выращивания) твёрдого объекта.

Технологии, применяемые для создания слоев[1][2][3]:

· Лазерная:

1. Лазерная стереолитография — ультрафиолетовый лазер постепенно, пиксель за пикселем, засвечивает жидкий фотополимер, либо фотополимер засвечивается ультрафиолетовой лампой через фотошаблон, меняющийся с новым слоем. При этом жидкий полимер затвердевает и превращается в достаточно прочный пластик.

2. Лазерное сплавление (англ. melting) — при этом лазер сплавляет порошок из металла или пластика, слой за слоем, в контур будущей детали.

3. Ламинирование — деталь создаётся из большого количества слоёв рабочего материала, которые постепенно накладываются друг на друга и склеиваются, при этом лазер вырезает в каждом контур сечения будущей детали.

· Струйная:

1. Застывание материала при охлаждении — раздаточная головка выдавливает на охлаждаемую платформу-основу капли разогретого термопластика. Капли быстро застывают и слипаются друг с другом, формируя слои будущего объекта.

2. Полимеризация фотополимерного пластика под действием ультрафиолетовой лампы — способ похож на предыдущий, но пластик твердеет под действием ультрафиолета.

3. Склеивание или спекание порошкообразного материала — похоже на лазерное спекание, только порошковая основа (подчас на основе измельчённой бумаги или целлюлозы) склеивается жидким (иногда клеющим) веществом, поступающим из струйной головки. При этом можно воспроизвести окраску детали, используя вещества различных цветов. Существуют образцы 3D-принтеров, использующих головки струйных принтеров.

4. Густые керамические смеси тоже применяются в качестве самоотверждаемого материала для 3D-печати крупных архитектурных моделей[4].

5. Биопринтеры — ранние экспериментальные установки, в которых печать 3D-структуры будущего объекта (органа для пересадки) производится каплями, содержащими живые клетки[5]. Далее деление, рост и модификации клеток обеспечивает окончательное формирование объекта.

 

  • Лазерная стереолитография (англ. laser stereolithography, SLA) — объект формируется из специального жидкого фотополимера, затвердевающего под действием лазерного излучения (или излучения ртутных ламп). При этом лазерное излучение формирует на поверхности текущий слой разрабатываемого объекта, после чего объект погружается вфотополимер на толщину одного слоя, чтобы лазер мог приступить к формированию следующего слоя[1][2][3].
  • Селективное лазерное спекание (англ. selective laser sintering, SLS) (также англ. Direct metal laser sinteringDMLS) — объект формируется из плавкого порошкового материала (пластик, металл) путём его плавления под действием лазерного излучения[1][2][3]. Порошкообразный материал наносится на платформу тонким равномерным слоем (обычно специальным выравнивающим валиком), после чего лазерное излучение формирует на поверхности текущий слой разрабатываемого объекта. Затем платформа опускается на толщину одного слоя и на неё вновь наносится порошкообразный материал. Данная технология не нуждается в поддерживающих структурах «висящих в воздухе» элементов разрабатываемого объекта за счёт заполнения пустот порошком. Для уменьшения необходимой для спекания энергии температура рабочей камеры обычно поддерживается на уровне чуть ниже точки плавления рабочего материала, а для предотвращения окисления процесс проходит в бескислородной среде.
  • Электронно-лучевая плавка — аналогична технологиям SLS/DMLS, только здесь объект формируется путём плавления металлического порошка электронным лучом в вакууме[1][2][3].
  • Моделирование методом наплавления — объект формируется путём послойной укладки расплавленной нити из плавкого рабочего материала (пластик, металл, воск). Рабочий материал подаётся в экструзионную головку, которая выдавливает на охлаждаемую платформу тонкую нить расплавленного материала, формируя таким образом текущий слой разрабатываемого объекта. Далее платформа опускается на толщину одного слоя, чтобы можно было нанести следующий слой[1][2][3]. Часто в данной технологии участвуют две рабочие головки — одна выдавливает на платформу рабочий материал, другая — материал поддержки.
  • Изготовление объектов с использованием ламинирования (англ. laminated object manufacturing, LOM) — объект формируется послойным склеиванием (нагревом, давлением) тонких плёнок рабочего материала с вырезанием (с помощью лазерного луча или режущего инструмента) соответствующих контуров на каждом слое. За счет отсутствия пустот данная технология не нуждается в поддерживающих структурах «висящих в воздухе» элементов разрабатываемого объекта, однако, удаление лишнего материала (обычно его разделяют на мелкие кусочки) в некоторых ситуациях может вызывать затруднения[1][2][3].

· Для быстрого прототипирования, то есть быстрого изготовления прототипов моделей и объектов для дальнейшей доводки. Уже на этапе проектирования можно кардинальным образом изменить конструкцию узла или объекта в целом. В инженерии такой подход способен существенно снизить затраты в производстве и освоении новой продукции.

· Для быстрого производства — изготовление готовых деталей из материалов, поддерживаемых 3D-принтерами. Это отличное решение для мелкосерийного производства.

· Изготовление моделей и форм для литейного производства.

· Конструкция из прозрачного материала позволяет увидеть работу механизма «изнутри», что в частности было использовано инженерами Porsche при изучении тока масла в трансмиссии автомобиля ещё при разработке.

· Производство различных мелочей в домашних условиях.

· Производство сложных, массивных, прочных и недорогих систем. Например, беспилотный самолёт Polecat[en] компании Lockheed, большая часть деталей которого была изготовлена методом скоростной трёхмерной печати.

· Разработки университета Миссури, позволяющие наносить на специальный био-гель сгустки клеток заданного типа. Развитие данной технологии — выращивание полноценных органов.

· В медицине, при протезировании и производстве имплантатов (фрагменты скелета, черепа[8], костей, хрящевые ткани). Ведутся эксперименты по печати донорских органов[9].

· Для строительства зданий и сооружений[10][11][12].

· Для создания компонентов оружия (Defense Distributed). Существуют эксперименты по печати оружия целиком[13].

· Производства корпусов экспериментальной техники (автомобили[14], телефоны, радио-электронное оборудование)

· Пищевое производство[15].

Плоттер и сканер

Плоттер (графопостроитель) — устройство, которое чертит графики, рисунки или диаграммы под управлением компьютера.

Плоттеры используются для получения сложных конструкторских чертежей, архитектурных планов, географических и метеорологических карт, деловых схем. Плоттеры рисуют изображения с помощью пера.

Роликовые плоттеры прокручивают бумагу под пером, а планшетные плоттеры перемещают перо через всю поверхность горизонтально лежащей бумаги.

Сканер — устройство для ввода в компьютер графических изображений. Создает оцифрованное изображение документа и помещает его в память компьютера.

Если принтеры выводят информацию из компьютера, то сканеры, наоборот, переносят информацию с бумажных документов в память компьютера. Существуют ручные сканеры, которые прокатывают по поверхности документа рукой, и планшетные сканеры, по внешнему виду напоминающие копировальные машины.

Если при помощи сканера вводится текст, компьютер воспринимает его как картинку, а не как последовательность символов. Для преобразования такого графического текста в обычный символьный формат используют программы оптического распознавания образов

Модем и факс-модем

Модем — устройство для передачи компьютерных данных на большие расстояния по телефонным линиям связи.

Цифровые сигналы, вырабатываемые компьютером, нельзя напрямую передавать по телефонной сети, потому что она предназначена для передачи человеческой речи — непрерывных сигналов звуковой частоты.

Модем обеспечивает преобразование цифровых сигналов компьютера в переменный ток частоты звукового диапазона — этот процесс называется модуляцией, а также обратное преобразование, которое называется демодуляцией. Отсюда название устройства: модеммо дулятор/ дем одулятор.



Рис. 2.24. Схема реализации модемной связи

Для осуществления связи один модем вызывает другой по номеру телефона, а тот отвечает на вызов. Затем модемы посылают друг другу сигналы, согласуя подходящий им обоим режим связи. После этого передающий модем начинает посылать модулированные данные с согласованными скоростью (количеством бит в секунду) и форматом. Модем на другом конце преобразует полученную информацию в цифровой вид и передает её своему компьютеру. Закончив сеанс связи, модем отключается от линии.

Управление модемом осуществляется с помощью специального коммутационного программного обеспечения.

Модемы бывают внешние, выполненные в виде отдельного устройства, и внутренние, представляющие собой электронную плату, устанавливаемую внутри компьютера. Почти все модемы поддерживают и функции факсов.

Факс — это устройство факсимильной передачи изображения по телефонной сети. Название "факс" произошло от слова "факсимиле" (лат. fac simile — сделай подобное), означающее точное воспроизведение графического оригинала (подписи, документа и т.д.) средствами печати. Модем, который может передавать и получать данные как факс, называется факс-модемом.

Манипуляторы

Манипуляторы (мышь, джойстик и др.) — это специальные устройства, которые используются для управления курсором.

Мышь имеет вид небольшой коробки, полностью умещающейся на ладони. Мышь связана с компьютером кабелем через специальный блок — адаптер, и её движения преобразуются в соответствующие перемещения курсора по экрану дисплея. В верхней части устройства расположены управляющие кнопки (обычно их три), позволяющие задавать начало и конец движения, осуществлять выбор меню и т.п.

Джойстик — обычно это стержень-ручка, отклонение которой от вертикального положения приводит к передвижению курсора в соответствующем направлении по экрану монитора. Часто применяется в компьютерных играх. В некоторых моделях в джойстик монтируется датчик давления. В этом случае, чем сильнее пользователь нажимает на ручку, тем быстрее движется курсор по экрану дисплея.

Трекбол — небольшая коробка с шариком, встроенным в верхнюю часть корпуса. Пользователь рукой вращает шарик и перемещает, соответственно, курсор. В отличие от мыши, трекбол не требует свободного пространства около компьютера, его можно встроить в корпус машины.

Дигитайзер — устройство для преобразования готовых изображений (чертежей, карт) в цифровую форму. Представляет собой плоскую панель — планшет, располагаемую на столе, и специальный инструмент — перо, с помощью которого указывается позиция на планшете. При перемещении пера по планшету фиксируются его координаты в близко расположенных точках, которые затем преобразуются в компьютере в требуемые единицы измерения

 


Лекция №7


Поделиться с друзьями:

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.106 с.