Архитектура интеллектуальных роботов — КиберПедия 

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Архитектура интеллектуальных роботов



Введение

Эволюция представлений о путях развития робототехники, ее целях и задачах весьма схожа с тем, что наблюдается с такой областью, как искусственный интеллект. Декларируемые общие принципы и, как казалось, понимание путей достижения некой глобальной цели исследования сменилось узкой специализацией, множеством частных, зачастую не связанных между собою подцелей и направлений.

Объясняется это тем, что поставленные изначально задачи оказались значительно более сложными, требующими создания совершенно иных моделей, методов и технологий, и прежде всего – технологий искусственного интеллекта.

Технологии искусственного интеллекта (ИИ) всегда были тесно связаны с робототехникой. Не случайно одним из направлений ИИ до сих пор считается целенаправленное поведение роботов (создание интеллектуальных роботов, способных автономно совершать операции по достижению целей, поставленных человеком) [Поспелов, 1988].

Робот – это технический комплекс, предназначенный для выполнения различных движений и некоторых интеллектуальных функций человека и обладающий необходимыми для этого исполнительными устройствами, управляющими и информационными системами, а также средствами решения вычислительно-логических задач [Попов и др., 1990].

В настоящее время различают 3 поколения роботов:

· Программные. Жестко заданная программа (циклограмма).

· Адаптивные. Возможность автоматически перепрограммироваться (адаптироваться) в зависимости от обстановки. Изначально задаются лишь основы программы действий.

· Интеллектуальные. Задание вводится в общей форме, а сам робот обладает возможностью принимать решения или планировать свои действия в распознаваемой им неопределенной или сложной обстановке.

Интеллектуальные роботы

Общепринято мнение, что интеллектуальный робот обладает т.н. моделью внешнего мира или внутренней средой, что позволяет роботу действовать в условиях неопределенности информации ([Попов и др., 1976]). В том случае, если эта модель реализована в виде базы знаний, то целесообразно, чтобы эта база знаний была динамической. При этом коррекция правил вывода в условиях меняющейся внешней среды естественным образом реализует механизмы самообучения и адаптации.

Если отойти от подобного «перечислительно-функционального» определения ИР, то останется лишь два более или менее конструктивных определения. Первое заключается в том, что интеллектуальный робот – это робот, в состав которого входит интеллектуальная система управления. Тогда достаточно только выбрать определение интеллектуальной системы (ИС). Например, определить ИС как компьютерную систему для решения задач, которые или не могут быть решены человеком в реальное время, или же их решение требует автоматизированной поддержки, или же их решение дает результаты сопоставимые по информативности с решениями человека ([Финн, 2004a], [Финн, 2004b]).



Кроме того, среди прочего подразумевается, что задачи, решаемые ИС не предполагают полноты знаний, а сама ИС должна обладать способностями: к упорядочению данных и знаний с выделением существенных параметров; к обучению на основе позитивных и негативных примеров, к адаптации в соответствии с изменением множества фактов и знаний и т.д. ([Финн, 2004b])

Другим, менее формальным, определением интеллектуальности робота может быть способность системы решать задачи, сформулированные в общем виде. Это определение является, не смотря на свою «слабость», достаточно конструктивным по крайней мере для того, чтобы определить «степень интеллектуальности» робота.

Итак, несмотря на множество предлагаемых критериев интеллектуальности, самым сильным остается по-прежнему требование, согласно которому роль человека при взаимодействии с ИР должна свестись лишь к постановке задачи.

Заключение

На сегодняшний день интеллектуальные роботы вышли из области чисто научных разработок и становятся такими же необходимыми элементами повседневной жизни, как телевидение и сотовая связь.

Однако, чтобы вызвать полноценный бум, необходимо преодолеть некоторые ключевые проблемы. Остаются задачи коммуникации и координации. Требует проработки и механизм захвата.

И все же способности роботов быстро развиваются. Согласно исследованиям, 1.5-кг мозг человека может выполнять около 100 трлн операций в секунду — почти втрое больше, чем самый мощный в мире компьютер Earth Simulator. Развиваясь по закону Мура, машины могут достичь такой обрабатывающей мощности. Однако, чтобы быть достаточно полезным, роботу не нужны все возможности человеческого мозга. Умственных способностей рыбки гуппи примерно в 1000 млн операций в секунду вполне достаточно, чтобы мобильные бытовые роботы могли уверенно ориентироваться в незнакомом окружении. Даже лишенные человеческого разума, роботы-андроиды займут часть рынка. Sony, Honda и некоторые другие японские компании предлагают роботов-компаньонов.



О масштабах происходящих перемен дают данные об объемах продаж. По подсчетам экспертов, объем рынка "бытовых роботов" в Японии в прошлом году составил 390 млрд. иен ($3,2 млрд.), а к 2025 году достигнет годового объема в 8 трлн. иен ($70 млрд.).

В этом году рынок персональных и мобильных роботов должен вырасти до 5,4 млрд долл. и стать крупнее рынка промышленных стационарных роботов, утверждает Дэн Кара, президент фирмы Robotics Trends, которая организует конференции и пропагандирует отрасль. К 2010 году, по словам Кара, эта цифра приблизится к 17 млрд долл. Пусть некоторые считают эти оценки слишком оптимистичными, но у Кара есть наглядные свидетельства наступления лихорадки роботизации. В прошлом году выставка Robodex в Японии собрала около 68 тыс. посетителей, да и объемы продаж Roomba и da Vinci говорят сами за себя.

Сегодня мы живем в стремительно изменяющемся мире, неотъемлемой частью которого будут роботы, обладающие искусственным интеллектом. Мы не можем остановить эти изменения, но в наших силах направить их для улучшения жизни человека.

Список литературы

[Макаров и др., 2003]Макаров И.М., Топчиев Ю.И. Робототехника: история и перспективы.-М.: Наука, Издательство МАИ, 2003.

[Мобильные роботы]Фестиваль "Мобильные роботы" в МГУ. http:// www.robot.ru

[Охоцимский и др., 2000] Охоцимский Д.Е., Павловский В.Е., Плахов А.Г., Туганов А.Н.. Моделирование игры роботов-футболистов и базовые алгоритмы управления ими. // Искусственный интеллект, N 3, 2000.

[Поспелов, 1988] Поспелов Г.С. Искусственный интеллект - основа новой информационной технологии. -М.:Наука, 1988.

[Попов и др., 1976] Попов Э.В., Фридман Г.Р. Алгоритмические основы
интеллектуальных роботов и искусственного интеллекта, М: Наука, 1976.

[Попов и др., 1990]Попов Е.П., Письменный Г.В. Основы робототехники: Введение в специальность. М.:Высш.шк., 1990.

[Финн, 2004a] Финн В.К. Искусственный интеллект: Идейная база и основной продукт, 9-я национальная конференция по искусственному интеллекту, Труды конференции, Т.1, М., Физматлит, 2004.

[Финн, 2004b] Финн В.К. Об интеллектуальном анализе данных //Новости искусственного интеллекта №3, 2004.

[DARPA]DARPA official materials. http://www.darpa.mil

[Fira]FIRA official materials. http:// www.fira.net

[IGVC]IGVC official materials. http://www.igvc.org

[RoboCup] RoboCup Federation. Official materials. http:// www.robocup.org

Интеллектуальные роботы будущего

Отправляемые в космос роботы, погрузившись, например, в ледяной океан Юпитера и Сатурна, должны принимать решения о том, что делать дальше. Ведь, чтобы получить информацию с Земли, даже, когда подразумевается скорость света, потребуется несколько часов.

Поэтому, понятно, что для робота-исследователя важно, насколько он умен. От этого зависит, сможет ли он избежать, подстерегающие опасности. Вопросы эти волнуют ученых. Занимался ими и ученый из штата Массачусетс Йогеш Гердхар, работающий в институте Океанографии в Вудс-Холе. Он, в своей докторской диссертации, усовершенствовал интеллект подводного робота Aqua, которые очень схожи с космическими, поскольку трудности заставляют их так же принимать важные решения.

Находящийся на своего рода границе Марс не позволяет ученым напрямую управлять роботами, которые проводят исследования. Очень сложно передавать данные, когда они находятся за пределами доступных расстояний. Потоковое HD- видео невозможно получать по многим причинам в режиме времени реального, что касается и воды. Хотя там отсутствует радиация, из-за повышенной солености, «общение» с роботами также затруднены. Все, что имеется для таких случаев у специалистов это модем акустический с низкой пропускающей способностью. Поэтому с Марса данные получить быстрее, чем от находящегося под водой робота.

Гердхар

Решением является обучение робота, который должен самостоятельно научиться определять необычные объекты и все, что имеет важное действительно значение. На Земле типичный подводный робот способен выполнить простейшие задачи: перемещаться по маршрутам, заданным заранее, делая по пути сотни тысяч фотографий. Идея состоит в создании интеллекта искусственного, который поможет роботу в моделировании любого предмета, попавшегося на глаза, и определении чему он соответствует. Например, встречая под водой камни и песок, подводный робот должен уметь создать базу, связанную с подобным типом местности.

Тогда, например, увидев рифы коралловые, он их идентифицирует и понятно, определит как «важные». Запрограммировав робота таким образом, чтобы для него приоритетными были необычные предметы, можно сократить время, затрачиваемое на исследование привычных объектов и на посылку снимков на Землю. Робот, без подготовки сможет сам делать открытия на совершенно неизведанных планетах, не располагая изначально никакими сведениями о ней.

 

Введение

Эволюция представлений о путях развития робототехники, ее целях и задачах весьма схожа с тем, что наблюдается с такой областью, как искусственный интеллект. Декларируемые общие принципы и, как казалось, понимание путей достижения некой глобальной цели исследования сменилось узкой специализацией, множеством частных, зачастую не связанных между собою подцелей и направлений.

Объясняется это тем, что поставленные изначально задачи оказались значительно более сложными, требующими создания совершенно иных моделей, методов и технологий, и прежде всего – технологий искусственного интеллекта.

Технологии искусственного интеллекта (ИИ) всегда были тесно связаны с робототехникой. Не случайно одним из направлений ИИ до сих пор считается целенаправленное поведение роботов (создание интеллектуальных роботов, способных автономно совершать операции по достижению целей, поставленных человеком) [Поспелов, 1988].

Робот – это технический комплекс, предназначенный для выполнения различных движений и некоторых интеллектуальных функций человека и обладающий необходимыми для этого исполнительными устройствами, управляющими и информационными системами, а также средствами решения вычислительно-логических задач [Попов и др., 1990].

В настоящее время различают 3 поколения роботов:

· Программные. Жестко заданная программа (циклограмма).

· Адаптивные. Возможность автоматически перепрограммироваться (адаптироваться) в зависимости от обстановки. Изначально задаются лишь основы программы действий.

· Интеллектуальные. Задание вводится в общей форме, а сам робот обладает возможностью принимать решения или планировать свои действия в распознаваемой им неопределенной или сложной обстановке.

Интеллектуальные роботы

Общепринято мнение, что интеллектуальный робот обладает т.н. моделью внешнего мира или внутренней средой, что позволяет роботу действовать в условиях неопределенности информации ([Попов и др., 1976]). В том случае, если эта модель реализована в виде базы знаний, то целесообразно, чтобы эта база знаний была динамической. При этом коррекция правил вывода в условиях меняющейся внешней среды естественным образом реализует механизмы самообучения и адаптации.

Если отойти от подобного «перечислительно-функционального» определения ИР, то останется лишь два более или менее конструктивных определения. Первое заключается в том, что интеллектуальный робот – это робот, в состав которого входит интеллектуальная система управления. Тогда достаточно только выбрать определение интеллектуальной системы (ИС). Например, определить ИС как компьютерную систему для решения задач, которые или не могут быть решены человеком в реальное время, или же их решение требует автоматизированной поддержки, или же их решение дает результаты сопоставимые по информативности с решениями человека ([Финн, 2004a], [Финн, 2004b]).

Кроме того, среди прочего подразумевается, что задачи, решаемые ИС не предполагают полноты знаний, а сама ИС должна обладать способностями: к упорядочению данных и знаний с выделением существенных параметров; к обучению на основе позитивных и негативных примеров, к адаптации в соответствии с изменением множества фактов и знаний и т.д. ([Финн, 2004b])

Другим, менее формальным, определением интеллектуальности робота может быть способность системы решать задачи, сформулированные в общем виде. Это определение является, не смотря на свою «слабость», достаточно конструктивным по крайней мере для того, чтобы определить «степень интеллектуальности» робота.

Итак, несмотря на множество предлагаемых критериев интеллектуальности, самым сильным остается по-прежнему требование, согласно которому роль человека при взаимодействии с ИР должна свестись лишь к постановке задачи.

Архитектура интеллектуальных роботов

На сегодняшний день считается, что в состав интеллектуального робота должны входить:

Исполнительные органы – это манипуляторы, ходовая часть и др. устройства, с помощью которых робот может воздействовать на окружающие его предметы. Причем по своей структуре это сложные технические устройства, имеющие в своем составе сервоприводы, мехатронные части, датчики, системы управления. По аналогии с живыми организмами это руки и ноги робота.

Датчики – это системы технического зрения, слуха, осязания, датчики расстояний, локаторы и др. устройства, которые позволяют получить информацию из окружающего мира.

Система управления – это мозг робота, который должен принимать информацию от датчиков и управлять исполнительными органами. Эта часть робота обычно реализуется программными средствами. В состав системы управления интеллектуального робота должны входить следующие компоненты:

Модель мира – отражает состояние окружающего робот мира в терминах, удобных для хранения и обработки. Модель мира выполняет функцию запоминания состояния объектов в мире и их свойств.

Система распознавания – сюда входят системы распознавания изображений, распознавания речи и т.п. Задачей системы распознавания является идентификация, т.е. «узнавание» окружающих робот предметов, их положения в пространстве. В результате работы компонентов системы распознавания строится модель мира.

Система планирования действий – осуществляет «виртуальное» преобразование модели мира с целью получения какого-нибудь действия. При этом обычно проверяется достижимость поставленной цели. Результатом работы планирования действий является построение планов, т.е. последовательностей элементарных действий.

Система выполнения действий – пытается выполнить запланированные действия, подавая команды на исполнительные устройства и контролируя при этом процесс выполнения. Если выполнение элементарного действия оказывается невозможным, то весь процесс прерывается и должно быть выполнено новое (или частично новое) планирование.

Система управления целями – определяет иерархию, т.е. значимость и порядок достижения поставленных целей.

Важными свойствами системы управления является способность к обучению и адаптации, т.е. способность генерировать последовательности действий для поставленной цели, а также подстраивать свое поведение под изменяющиеся условия окружающей среды для достижения поставленных целей.






Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...





© cyberpedia.su 2017 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав

0.01 с.