Жизнь таинственно ухмыляется в ответ — КиберПедия 

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Жизнь таинственно ухмыляется в ответ

2017-08-24 241
Жизнь таинственно ухмыляется в ответ 0.00 из 5.00 0 оценок
Заказать работу

 

В «Приключениях Алисы в Стране чудес» Льюиса Кэрролла есть чудесный персонаж — Чеширский кот, который умел исчезать на глазах, оставляя после себя лишь улыбку. Алиса на это заметила: «Видала я котов без улыбок, но улыбку без кота…» Прекрасно зная, как законы термодинамики действуют в живых клетках и как гены кодируют информацию, необходимую для формирования новой клетки, многие биологи тем не менее испытывают подобное недоумение, когда тайна жизни, оставаясь неразгаданной, продолжает улыбаться им в лицо.

Одна из проблем, с которой сталкиваются ученые при попытках приблизиться к тайне жизни, заключается в невероятной сложности биохимических реакций, протекающих в каждой живой клетке. Когда химики искусственным путем получают аминокислоту или сахар, они в большинстве случаев синтезируют только одно химическое соединение за один раз. И это удается им большими усилиями: для эксперимента — то есть конкретной реакции — необходимо создать и постоянно поддерживать целый комплекс сложных условий, таких как температура или концентрация различных соединений, участвующих в реакции. Контролируя все условия эксперимента, ученые оптимизируют и ускоряют синтез искомого соединения. На самом деле это непростая задача: необходимо держать под контролем происходящее в многочисленных специальных колбах, конденсаторах, разделительных колонках, фильтрах и других замысловатых лабораторных сосудах и приборах. В то же время каждая клетка вашего организма непрерывно синтезирует тысячи химических соединений, имея в своем распоряжении реактивную камеру объемом в несколько миллионных микролитра[16]. Как же все эти разнообразные сложные реакции протекают одновременно? Как все это молекулярное действо разыгрывается на сцене микроскопической клетки? Эти вопросы находятся в центре внимания новой науки — системной биологии, но справедливости ради стоит отметить, что они до сих пор остаются без ответов.

Еще одна загадка жизни заключается в ее конечности — в смерти. Особенность химических реакций заключается в их обратимости. Можно записать химическую реакцию в виде уравнения «субстраты —> продукты». Но на самом деле одновременно всегда протекает обратная реакция «продукты —> субстраты». Все дело в том, что при определенной совокупности условий доминирует одно из направлений реакции. Тем не менее для любой реакции всегда возможно создать другую комбинацию условий, при которых она меняет свое направление. Например, когда ископаемое топливо сгорает на воздухе, субстратами являются углерод и кислород, а единственным продуктом — двуокись углерода (парниковый газ). Принято считать, что данная реакция необратима, однако в рамках некоторых проектов по разработке технологии улавливания углекислого газа идет поиск условий и источника энергии для того, чтобы изменить направление данной реакции. Так, Рич Мейзел из Иллинойского университета основал компанию Dioxide Materials, цель которой — использовать силу электричества для преобразования атмосферного углекислого газа в топливо для транспортных средств[17].

С живой материей все обстоит по-другому. Еще никому не удалось создать условия, при которых было бы возможно превращение «мертвая клетка —> живая клетка». Безусловно, размышления наших предков о подобном превращении вылились в идею о душе. Мы больше не верим в наличие души у клетки. Что же тогда исчезает безвозвратно, когда умирает клетка или человек?

Вы наверняка уже задумались о том, что нового нам может рассказать о жизни молодая наука — синтетическая биология и владеют ли специалисты в этой области ключом к тайне жизни? Возможно, самым известным представителем синтетической биологии является пионер в области расшифровки генома Крейг Вентер, который в 2010 году поднял в научных кругах настоящую бурю, заявив, что создал искусственную жизнь. Результаты его работы отразились в газетных заголовках по всему миру и породили панику от мысли о новых расах искусственно синтезированных существ, которые в будущем захватят всю нашу планету. На самом деле Вентеру и его команде удалось модифицировать уже существующую форму жизни, а не создать новую. Сначала команда ученых под руководством Вентера синтезировала ДНК, содержащую полный геном паразитической бактерии Mycoplasma mycoides, вызывающей легочные заболевания у домашних коз. Затем синтезированный геном пересадили в живую бактериальную клетку и весьма хитрым способом убедили ее заменить свою изначальную (и единственную) хромосому синтетической копией.

Результат экспериментов Крейга, безусловно, превосходен. Хромосома бактерии содержит 1,8 млн оснований (букв генетического кода), которые должны быть расположены в строго определенной последовательности. Но, по сути, ученым удалось сделать то, что каждый из нас выполняет без каких-либо усилий. Речь идет о трансформации веществ, содержащихся в пище, в нашу собственную плоть.

Синтез хромосомы и ее пересадка в живую клетку, проделанные Вентером и его командой, открывают абсолютно новые горизонты синтетической биологии, о которых мы поговорим в последней главе. С большой вероятностью этой молодой науке удастся предложить новые эффективные способы производства лекарств, выращивания зерна и борьбы с загрязняющими веществами. Тем не менее в ходе экспериментов, направленных на эти и другие результаты, ученым пока не удалось создать новую жизнь. Несмотря на достижение Вентера, тайна самой сути жизни продолжает ухмыляться нам в лицо. Ричарду Фейнману, нобелевскому лауреату по физике, приписывается такое высказывание-озарение: «Мы не способны понять то, чего не можем создать». Согласно этому утверждению, мы не понимаем жизнь, поскольку нам пока не удалось ее воссоздать. Мы умеем смешивать химические соединения, умеем нагревать их, подвергать облучению. Мы даже умеем, подобно Франкенштейну Мэри Шелли, оживлять их с помощью электричества. Но создать жизнь мы можем пока единственным способом — внедрить эти химические соединения в уже существующие живые клетки или употребить их в пищу, сделав их тем самым частью наших собственных организмов.

Так почему же мы до сих пор не способны справиться с задачей, с которой ежесекундно и без особых усилий справляются триллионы простейших микробов? Мы что-то упустили? Более 70 лет назад этот вопрос волновал известнейшего физика Эрвина Шредингера. Удивительный ответ, к которому пришел ученый, является ключевым моментом для содержания данной книги. Чтобы понять, почему вывод Шредингера о самых глубоких тайнах жизни был и остается революционным для науки, необходимо вернуться в самое начало XX века, когда спиралевидная структура ДНК еще не была открыта, а мир физики буквально переворачивался с ног на голову.

 

Квантовая революция

 

В результате стремительного развития науки в эпоху Просвещения (XVIII–XIX века) появились ньютоновская механика, исследования электромагнетизма и термодинамика. Время показало, что вместе эти три раздела физики успешно описывали движение и поведение всех макроскопических объектов и явлений окружающего нас мира — от пушечных ядер до часов, от ураганов до паровозов, от маятников до планет. Но когда в конце XIX и в первой половине XX века ученые направили внимание на микроскопические составляющие материи — атомы и молекулы, они обнаружили, что в микромире привычные физические законы не действуют. В физике назревала революция.

Первым революционным прорывом в физике начала XX века стал ввод в научный обиход понятия кванта. Уже 14 декабря 1900 года немецкий физик Макс Планк представил результаты своих трудов на заседании Немецкого физического общества. Именно этот день принято считать днем рождения квантовой теории. В то время считалось, что энергия теплового излучения, как любая другая форма энергии, распространяется в пространстве как волна. Проблема заключалась в том, что волновая теория не могла объяснить, каким образом некоторые теплые объекты излучали энергию. Планк высказал революционную мысль о том, что материя, из которой состояли эти теплые объекты, колеблется на определенных дискретных частотах. Из этого следовало, что тепловая энергия испускается небольшими дискретными порциями — квантами, которые, в свою очередь, являются неделимыми. Его простая теория имела ошеломительный успех, однако коренным образом отличалась от классической теории излучения, в рамках которой энергия считалась непрерывной. Согласно теории Планка, энергия выходит из материи как вода, но не непрерывным потоком, а отдельными неделимыми порциями — словно из закрытого, но подтекающего крана.

Сам Планк крайне настороженно относился к идее о том, что энергия прерывна. Однако спустя пять лет после того, как он выдвинул квантовую теорию, Альберт Эйнштейн развил эту идею и предположил, что любой вид электромагнитного излучения, включая свет, выходит не непрерывно, а в виде квантов — дискретными порциями, или частицами, которые мы теперь называем фотонами. Он отметил, что такой взгляд на природу света объясняет еще одно явление, долгое время остававшееся загадкой, а именно фотоэффект — испускание электронов веществом под воздействием света. Именно за объяснение фотоэффекта, а не за более известные его работы по теории относительности, Эйнштейну была присуждена Нобелевская премия по физике в 1921 году.

Тем не менее существовало множество доказательств того, что свет распространяется как непрерывная волна. Как же свет может быть одновременно прерывным и непрерывным? В то время этот вопрос казался бессмысленным, по крайней мере в рамках классической науки.

Следующий гигантский шаг на пути к новой физике был сделан датским физиком Нильсом Бором. В 1912 году Бор переехал в Манчестер и стал работать с Эрнестом Резерфордом. Незадолго до того Резерфорд опубликовал работу о планетарной модели атома с крошечным, но крепким ядром, расположенным в центре и окруженным еще более крошечными электронами, вращающимися вокруг ядра. Однако никто не мог объяснить, как атому удается сохранять стабильность. Согласно классической электромагнитной теории, отрицательно заряженные электроны постоянно излучают энергию света, вращаясь вокруг положительно заряженного ядра. В таком случае они бы потеряли энергию и очень быстро (за одну миллионную секунды) закрутились бы по спиральной траектории по направлению к ядру, что привело бы к распаду атома. Однако электроны так себя не ведут. Так в чем же здесь дело?

Для объяснения стабильности атомов Нильс Бор выдвинул идею о том, что электроны не свободны в выборе любой орбиты вокруг ядра, а могут занимать лишь определенные стационарные («квантованные») орбиты. Электрон может излучать порцию (квант) электромагнитной энергии лишь при переходе на другую, более низкую, орбиту, причем величина излучаемой энергии будет равна разнице энергий орбит. При переходе на более высокую орбиту электрон поглощает электромагнитную энергию в размере одного фотона.

Попробуем наглядно продемонстрировать разницу между классической и квантовой теорией, а также объяснить, почему электрон может занимать только определенные стационарные орбиты в атоме. Давайте вспомним, как играются ноты на гитаре и на скрипке. Когда скрипач берет ноту, он зажимает пальцем одну из струн в каком-либо месте грифа, сокращая ее и таким образом добиваясь нужной ноты в тот момент, когда смычок касается струны, вызывая ее колебания. Чем короче струна, тем выше частота ее колебаний (больше колебаний в секунду) и тем выше получается звук. Чем длиннее область колебания струны, тем ниже частота колебаний (меньше колебаний в секунду) и тем ниже звук.

Прежде чем продолжить эту тему, скажем несколько слов об одном из фундаментальных принципов квантовой механики, а именно о тесной связи частоты колебаний и энергии[18]. Мы уже говорили о том, что субатомные частицы имеют также свойства волны. Это означает, что у них, как и у любой волны, распространяющейся в пространстве, есть такие показатели, как длина волны и частота колебаний. Быстрые колебания всегда подразумевают больше энергии, чем медленные колебания (представьте стиральную машину, работающую в режиме «отжим» — ее барабан должен вращаться (колебаться) на высокой частоте, чтобы получить достаточно энергии для отжима воды из одежды).

Вернемся к скрипке. Высота ноты (частота колебаний звука) может постоянно варьироваться в зависимости от длины колеблющейся струны, то есть расстояния от места закрепления струны до той точки на грифе, где она зажимается пальцем музыканта. Это сравнимо с обычной волной, длина которой (расстояние между двумя ближайшими вершинами) также может меняться. Именно поэтому мы отнесем скрипку к классическим инструментам, но не в смысле «классической музыки», а скорее в смысле «классической — не квантовой — физики». Вот почему так сложно научиться играть на скрипке: музыкант должен максимально точно знать, в каком месте грифа прижимать струну, чтобы извлечь нужную ноту.

Гитарный гриф устроен по-другому. На нем металлическими перегородками, которые выступают над грифом, но не касаются струн, отмечены лады. Таким образом, когда гитарист прижимает пальцем струну, она касается одной из перегородок, которая временно становится одним из ее концов (а вовсе не то место, где ее прижимает палец). Когда музыкант дергает струну, из нее извлекается звук, высота которого зависит от колебаний струны длиной от мостика до того лада, на котором зажата струна. Положение пальца, зажимающего струну (ближе к правой перегородке или ближе к левой), никак не повлияет на высоту извлекаемой ноты. Гитара, таким образом, относится к квантовым инструментам. Поскольку, согласно квантовой теории, частота колебаний и энергия взаимосвязаны, колеблющаяся гитарная струна должна обладать скорее дискретной, нежели непрерывной энергией. Подобным образом элементарные частицы, например электроны, обладают лишь определенными показателями частоты волны, каждый из которых связан с определенным уровнем дискретной энергии. При переходе из одного энергетического состояния в другое электрон поглощает или излучает энергию, равную разнице между энергетическим уровнем, который он покидает, и уровнем, на который он попадает.

К 1920-м годам Бор, вернувшийся в Копенгаген, уже был известен всему миру как один из нескольких европейских физиков, отчаянно работавших в то время над наиболее полной и последовательной математической теорией, способной описать все происходящее внутри атома. Одним из самых выдающихся физиков этой плеяды был молодой немецкий гений Вернер Гейзенберг. Летом 1925 года, поправляя здоровье на острове Гельголанд после приступа сенной лихорадки, Гейзенберг совершил прорыв в науке, сформулировав новые математические принципы, подходящие для описания внутриатомного мира. Однако это была довольно странная математика, а то, что она говорила нам об атомах, выглядело еще более странным. Так, Гейзенберг утверждал не только то, что мы не можем сказать наверняка, где находится электрон, не имея возможности его измерить, но и то, что сам электрон не имеет определенного местоположения, поскольку он расположен вокруг ядра неким неясным, непостижимым способом.

Гейзенберг был вынужден признать, что мир атомов — это призрачное, зыбкое пространство, формы существования которого проступают лишь тогда, когда мы взаимодействуем с ним с помощью измерительных приборов. Речь идет о процессе квантового измерения, который мы кратко описали выше. Гейзенберг показал, что данный процесс проявляет лишь те особенности квантового мира, к измерению которых он приспособлен, — подобно тому как каждый отдельный прибор на приборной панели автомобиля предоставляет информацию о какой-либо одной величине, например о скорости, преодоленном расстоянии или температуре двигателя. Так, мы можем провести эксперимент с целью установить точное расположение электрона в определенный момент времени; мы также можем провести другой эксперимент с целью определить скорость того же электрона. Гейзенберг математически доказал, что невозможно провести один эксперимент, в ходе которого мы могли бы установить одновременно и с максимальной точностью и то, где сейчас находится электрон, и то, как быстро он движется. В 1927 году это утверждение легло в основу знаменитого принципа неопределенности Гейзенберга, который с тех пор был много тысяч раз проверен и подтвержден в различных лабораториях мира. Этот принцип является одной из наиболее значимых научных идей и одним из основных постулатов квантовой механики.

В январе 1926 года, то есть в то самое время, когда Гейзенберг разрабатывал свои идеи, австрийский физик Эрвин Шредингер написал работу, в которой представил совершенно иную картину внутриатомного мира. В данной работе ученый предложил математическое уравнение, ныне известное как уравнение Шредингера, которое описывает не движение частицы, а изменение волны в пространстве. Согласно данному уравнению электрон является скорее не туманной частицей, вращающейся вокруг ядра по непостижимой траектории, а волной, распространяющейся внутри атома. Гейзенберг отрицал любую возможность получить изображение электрона в тот момент, когда мы его не измеряем. В отличие от него Шредингер склонялся к мысли о том, что электрон является самой настоящей физической волной, когда мы не наблюдаем за ним, но эта волна «сворачивается»[19]в дискретную частицу, как только мы начинаем за ней наблюдать. Его версия атомистической теории легла в основу волновой механики, а уравнение Шредингера описывает развитие и поведение волн во времени. Сегодня мы рассматриваем теории Гейзенберга и Шредингера как различные способы интерпретации математических основ квантовой механики, каждый из которых является по-своему правильным.

 

Волновая функция Шредингера

 

Когда нам нужно описать движение привычных видимых объектов (будь то пушечные ядра, паровозы или планеты), каждый из которых состоит из триллионов частиц, мы делаем это с помощью набора математических уравнений, восходящих еще к работам Исаака Ньютона. Однако, если описываемая нами система объектов находится в квантовом мире, мы должны использовать уравнение Шредингера. Именно здесь кроется важнейшее различие между двумя подходами к описанию объектов: для ньютоновского мира решением уравнения, описывающего движения, будет число или набор чисел, которое (которые) определяет точное местоположение объекта в данный момент времени. Решением уравнения Шредингера, описывающего квантовый мир, является волновая функция — математическая величина, которая не определяет точное местоположение, скажем, электрона в данный момент времени, но предлагает вместо этого набор чисел, описывающих вероятность обнаружения электрона в разных точках пространства в случае, если мы попытались бы его обнаружить.

Разумеется, вы можете отреагировать на это так, но этого недостаточно! Информация о том, где электрон может находиться, не кажется слишком уж полезной. Вам может показаться, что необходимо знать, где точно находится частица. Но в отличие от объекта классической физики, который всегда занимает определенное место в пространстве, электрон может находиться одновременно во многих местах до того момента, пока его не начнут измерять. Квантовая волновая функция распространяется на все пространство. Это означает, что при описании электрона нам остается довольствоваться набором чисел, выражающим вероятность обнаружения частицы не в каком-либо одном месте, а во всех точках пространства одновременно. Важно тем не менее понимать, что все эти квантовые вероятности не отражают пробела в наших знаниях, который можно заполнить, получив больше информации. Напротив, они отражают фундаментальную черту природного мира микроскопических размеров.

Представьте себе, что преступник, осужденный за кражу драгоценностей, получил право на досрочное освобождение и выходит из тюрьмы. Вместо того чтобы встать на путь истинный, он тут же возвращается к прежнему образу жизни и начинает совершать кражи по всему городу. Изучив карту, полицейские могут проследить его приблизительное местонахождение с того момента, как он был освобожден. Они не могут определить его точное местонахождение в данный момент, но они могут предположить, какова вероятность того, что он совершит кражи в тех или иных районах города.

Поначалу больше всего подвергаются риску быть ограбленными жители домов, расположенных недалеко от тюрьмы, однако со временем площадь территории, на которой могут быть совершены кражи, расширяется. Кроме того, помня, какие объекты кражи его интересовали, полицейские могут также с некоторой уверенностью предположить, что опасности подвергаются скорее благополучные районы, жители которых могут позволить себе дорогие украшения, нежели районы бедные. Подобную волну преступлений, совершаемых одним человеком, можно назвать волной вероятности. Она неосязаема и нереальна. Она представляет собой лишь ряд чисел, которые можно интерпретировать как координаты различных уголков города. Подобным образом волновая функция распространяется из точки, в которой в последний раз был замечен электрон. Вычисление значений волновой функции в различных точках пространства и времени позволяет строить предположения о том, где частица может появиться в следующий раз.

А что, если полицейские будут действовать по наводке и им удастся поймать вора с поличным, когда он будет вылезать из окна чужого дома, а при нем будет мешок с крадеными вещами? В тот же момент вероятностное распределение возможных местонахождений вора распадется: вор будет точно находиться в конкретном известном месте, а вероятность его нахождения в любом другом месте сведется к нулю. Подобным образом, если электрон обнаруживается в каком-то конкретном месте, его волновая функция немедленно рушится. В момент обнаружения электрона вероятность его нахождения в каком-либо другом месте сводится к нулю.

Однако кое в чем аналогия не срабатывает. Даже если перед тем, как поймать преступника, полицейские могут только установить вероятные места его пребывания, они понимают, что их предположения — результат нехватки информации. Ведь грабитель не распылил себя по городу: несмотря на то что в представлении полицейских он может находиться где угодно, он на самом деле всегда находится в каком-то одном месте в определенный момент времени. Кардинальное отличие поведения частицы от поведения вора заключается в том, что, когда мы не наблюдаем за движением электрона, мы все же не можем предположить, что он находится в определенном месте в какой-то момент времени. Мы можем только описать значения волновой функции, а волна может находиться везде одновременно. Только через акт наблюдения (выполняя над частицей некоторые измерения) мы можем «вынудить» электрон стать локализованной частицей.

К 1927 году благодаря усилиям Гейзенберга, Шредингера и других ученых математические основания квантовой механики были окончательно сформулированы. В наши дни они являются тем фундаментом, на котором стоят физика и химия. Кроме того, они раскрывают перед нами удивительно полную картину строительных элементов, из которых состоит Вселенная. Без объяснительной силы квантовой механики, описывающей, как все элементы микромира складываются в слаженную систему, многие из современных технологических достижений были бы попросту невозможны.

Итак, в конце 1920-х годов, вдохновленные собственными успехами в разгадке тайн внутриатомного мира, некоторые пионеры квантовой механики на время покинули свои физические лаборатории, чтобы покорить еще одну науку — биологию.

 


Поделиться с друзьями:

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.034 с.