Сложные реакции. Обратимые, параллельные, последовательные и цепные реакции. — КиберПедия 

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Сложные реакции. Обратимые, параллельные, последовательные и цепные реакции.

2017-08-24 1568
Сложные реакции. Обратимые, параллельные, последовательные и цепные реакции. 0.00 из 5.00 0 оценок
Заказать работу

Сложные реакции. Обратимые, параллельные, последовательные и цепные реакции.

Сложные реакции

Сложными называют химические реакции, протекающие более чем в одну стадию. Рассмотрим в качестве примера одну из сложных реакций, кинетика и механизм которой хорошо изучены:

2НI + Н2О2 ––> I2 + 2Н2О

Данная реакция является реакцией второго порядка; её кинетическое уравнение имеет следующий вид:

(II.28)

Изучение механизма реакции показало, что она является двухстадийной (протекает в две стадии):

1) НI + Н2О2 ––> НIО + Н2О

2) НIО + НI ––> I2 + Н2О

Скорость первой стадии V1 много больше скорости второй стадии V2 и общая скорость реакции определяется скоростью более медленной стадии, называемой поэтому скоростьопределяющей или лимитирующей.

Сделать вывод о том, является реакция элементарной или сложной, можно на основании результатов изучения её кинетики. Реакция является сложной, если экспериментально определенные частные порядки реакции не совпадают с коэффициентами при исходных веществах в стехиометрическом уравнении реакции; частные порядки сложной реакции могут быть дробными либо отрицательными, в кинетическое уравнение сложной реакции могут входить концентрации не только исходных веществ, но и продуктов реакции.

Классификация сложных реакций

Последовательные реакции.

Последовательными называются сложные реакции, протекающие таким образом, что вещества, образующиеся в результате одной стадии (т.е. продукты этой стадии), являются исходными веществами для другой стадии. Схематически последовательную реакцию можно изобразить следующим образом:

А ––> В ––> С ––>...

Число стадий и веществ, принимающих участие в каждой из стадий, может быть различным.

Параллельные реакции.

Параллельными называют химические реакции, в которых одни и те же исходные вещества одновременно могут образовывать различные продукты реакции, например, два или более изомера:

Сопряжённые реакции.

Сопряжёнными принято называть сложные реакции, протекающие следующим образом:

1) А + В ––> С

2) А + D ––> Е,

причём одна из реакций может протекать самостоятельно, а вторая возможна только при наличии первой. Вещество А, общее для обеих реакций, носит название актор, вещество В – индуктор, вещество D, взаимодействующее с А только при наличии первой реакции – акцептор. Например, бензол в водном растворе не окисляется пероксидом водорода, но при добавлении солей Fe(II) происходит превращение его в фенол и дифенил. Механизм реакции следующий. На первой стадии образуются свободные радикалы:

Fe2+ + H2O2 ––> Fe3+ + OH– + OH•

которые реагируют с ионами Fe2+ и бензолом:

Fe2+ + OH• ––> Fe3+ + OH–

C6H6 + OH• ––> C6H5• + H2O

Происходит также рекомбинация радикалов:

C6H5• + OH• ––> C6H5ОН

C6H5• + C6H5• ––> C6H5–C6H5

Т.о., обе реакции протекают с участием общего промежуточного свободного радикала OH•.

Цепные реакции.

Цепными называют реакции, состоящие из ряда взаимосвязанных стадий, когда частицы, образующиеся в результате каждой стадии, генерируют последующие стадии. Как правило, цепные реакции протекают с участием свободных радикалов. Для всех цепных реакций характерны три типичные стадии, которые мы рассмотрим на примере фотохимической реакции образования хлороводорода.

1. Зарождение цепи (инициация):

Сl2 + hν ––> 2 Сl•

2. Развитие цепи:

Н2 + Сl• ––> НСl + Н•

Н• + Сl2 ––> НСl + Сl•

Стадия развития цепи характеризуется числом молекул продукта реакции, приходящихся на одну активную частицу – длиной цепи.

3. Обрыв цепи (рекомбинация):

Н• + Н• ––> Н2

Сl• + Сl• ––> Сl2

Н• + Сl• ––> НСl

Обрыв цепи возможен также при взаимодействии активных частиц с материалом стенки сосуда, в котором проводится реакция, поэтому скорость цепных реакций может зависеть от материала и даже от формы реакционного сосуда.

Реакция образования хлороводорода является примером неразветвленной цепной реакции – реакции, в которой на одну прореагировавшую активную частицу приходится не более одной вновь возникающей. Разветвленными называют цепные реакции, в которых на каждую прореагировавшую активную частицу приходится более одной вновь возникающей, т.е. число активных частиц в ходе реакции постоянно возрастает. Примером разветвленной цепной реакции является реакция взаимодействия водорода с кислородом:

1. Инициация:

Н2 + О2 ––> Н2О + О•

2. Развитие цепи:

О• + Н2 ––> Н• + ОН•

Н• + О2 ––> О• + ОН•

ОН• + Н2 ––> Н2О + Н•

Обрати́мые реа́кции — химические реакции, протекающие одновременно в двух противоположных направлениях (прямом и обратном), протекает до конца например:

3H2 + N2 ⇌ 2NH3


Радиусы атомов

Зависящие от радиусов атомов энергии атомных орбиталей, точнее, энергии электронов, находящихся на различных орбиталях (орбитальные энергии), определяются взаимным притяжением ядра и электронов, взаимным отталкиванием электронов и отражают размеры и электронное строение атома.
Орбитальный радиус несвязанного атома рассчитывается квантово-химическими методами как расстояние от его ядра до максимума электронной плотности, относящегося к последней занятой электронной орбитали. Рассмотрим изменения орбитальных радиусов для некоторых элементов периодической системы Д.И.Менделеева (табл. 2.1).
В группах для однотипных элементов при движении сверху вниз наблюдается закономерный рост орбитальных радиусов, что связано с увеличением числа электронных оболочек. В периодах при движении слева направо прослеживается, как правило, уменьшение орбитальных радиусов.

Главное квантовое число n

Описывает:

· среднее расстояние от орбитали до ядра;

· энергетическое состояние электрона в атоме.

Чем больше значение n, тем выше энергия электрона и больше размер электронного облака. Если в атоме несколько электронов с одинаковым n, то они образуют электронные облака одинакового размера - электронные оболочки.

Магнитное квантовое число m

Постулат Де-Бройля

Волнова́я фу́нкция, или пси-фу́нкция — комплекснозначная функция, используемая в квантовой механике для описания чистого состояния системы. Является коэффициентом разложения вектора состояния по базису (обычно координатному):

 

где — координатный базисный вектор, а — волновая функция вкоординатном представлении.

Согласно копенгагенской интерпретации квантовой механики плотность вероятности нахождения частицы в данной точкеконфигурационного пространства в данный момент времени считается равной квадрату абсолютного значения волновой функции этого состояния в координатном представлении.

Уравнение Шредингера — основное уравнение нерелятивистской квантовой механики, описывающее динамику частиц. Предложено Э. Шредингером в 1926 г. Состояние классической частицы в любой момент времени описывается заданием ее координат и импульсов (x,y,z,px,py,pz). Зная эти величины в момент времени t, можно определить эволюцию системы под действием известных сил во все последующие моменты времени. Координаты и импульсы частиц сами являются величинами, непосредственно измеряемыми на опыте. В кван­то­вой физике состояние системы описывается волновой функцией ψ(x,y,z,t). Т. к. для квантовой частицы нельзя одновременно точно определить значения ее координат и импульса, то не имеет смысла говорить о движении частицы по определенной траектории, можно определить только вероятность нахождения частицы в данной точке в данный момент времени, которая определяется квадратом модуля волновой функции

W ~ |ψ(x,y,z,t)|2.

Эволюция квантовой системы в нерелятивистском случае описывается волновой функцией, удовлетворяющей уравнению Шредингера

где ψ(x,y,z,t) − волновая функция, − оператор Гамильтона (оператор полной энергии системы).


К ван-дер-ваальсовым силам относятся взаимодействия между диполями (постоянными и индуцированными). Название связано с тем фактом, что эти силы являются причиной поправки на внутреннее давление в уравнении состояния реального газа Ван-дер-Ваальса. Эти взаимодействия, а также водородные связи, определяют формирование пространственной структуры биологических макромолекул.

Ван-дер-ваальсовы силы также возникают между частицей (макроскопической частицей или наночастицей) и молекулой и между двумя частицами[1][2][3].


ВОДОРОДНАЯ СВЯЗЬ
(Н-связь)– особый тип взаимодействия между реакционно-способными группами, при этом одна из групп содержит атом водорода, склонный к такому взаимодействию. Водородная связь – глобальное явление, охватывающее всю химию. В отличие от обычных химических связей, Н-связь появляется не в результате целенаправленного синтеза, а возникает в подходящих условиях сама и проявляется в виде межмолекулярных или внутримолекулярных взаимодействий.

Особенности водородной связи. Отличительная черта водородной связи – сравнительно низкая прочность, ее энергия в 5–10 раз ниже, чем энергия химической связи. По энергии она занимает промежуточное положение между химическими связями и Ван-дер-ваальсовыми взаимодействиями, теми, что удерживают молекулы в твердой или жидкой фазе.

В образовании Н-связи определяющую роль играет электроотрицательность участвующих в связи атомов – способность оттягивать на себя электроны химической связи от атома – партнера, участвующего в этой связи. В результате на атоме А с повышенной электроотрицательностью возникает частичный отрицательный заряд d-, а на атоме-партнере – положительный d+, химическая связь при этом поляризуется: Аd-–Нd+.

Возникший частичный положительный заряд на атоме водорода позволяет ему притягивать другую молекулу, также содержащую электроотрицательный элемент, таким образом, основную долю в образование Н-связи вносят электростатические взаимодействия.

В формировании Н-связи участвуют три атома, два электроотрицательных (А и Б) и находящийся между ними атом водорода Н, структура такой связи может быть представлена следующим образом: Б···Нd+–Аd- (водородную связь обычно обозначают точечной линией). Атом А, химически связанный с Н, называют донором протона (лат. donare – дарить, жертвовать), а Б – его акцептором (лат. acceptor – приемщик). Чаще всего истинного «донорства» нет, и Н остается химически связанным с А.

Атомов – доноров А, поставляющих Н для образования Н-связей, не много, практически всего три: N, O и F, в то же время набор атомов-акцепторов Б весьма широк.


 

Диссоциация воды

Чистая вода, хоть и плохо (по сравнению с растворами электролитов), но может проводить электрический ток. Это вызвано способностью молекулы воды распадаться (диссоциировать) на два иона которые и являются проводниками электрического тока в чистой воде (ниже под диссоциацией подразумевается электролитическая диссоциация - распад на ионы):

H2O ↔ H+ + OH-

Примерно на 556 000 000 не диссоциированных молекул воды диссоциирует только 1 молекула, однако это 60 000 000 000 диссоциированных молекул в 1мм3. Диссоциация обратима, то есть ионы H+ и OH- могут снова образовать молекулу воды. В итоге наступает динамическое равновесие при котором количество распавшихся молекул равно количеству образовавшихся из H+ и OH- ионов. Другими словами скорости обоих процессов будут равны. Для нашего случая, уравнение скорости химической реакции можно написать так:

υ1 = κ1 • [H2O] (для диссоциации воды)

υ2 = κ2 • [H+] • [HO-] (для обратного процесса)

Водоро́дный показа́тель, pH (лат. p ondus H ydrogenii — «вес водорода», произносится «пэ аш») — мера активности (в очень разбавленных растворах она эквивалентна концентрации) ионов водорода в растворе, количественно выражающая его кислотность. Равен по модулю и противоположен по знаку десятичному логарифму активности водородных ионов, выраженной в молях на один литр:

 

 

Гидролиз солей - это химическое взаимодействие ионов соли с ионами воды, приводящее к образованию слабого электролита.

 

Если рассматривать соль как продукт нейтрализации основания кислотой, то можно разделить соли на четыре группы, для каждой из которых гидролиз будет протекать по-своему.

 

Соль, образованная сильным основанием и сильной кислотой (KBr, NaCl, NaNO3), гидролизу подвергаться не будет, так как в этом случае слабый электролит не образуется. Реакция среды остается нейтральной.


 

Классификация

По степени раздробленности (дисперсности) системы делятся на следующие классы: грубодисперсные, размер частиц в которых более 10-5 м; тонкодисперсные (микрогетерогенные) с размером частиц от 10-5 до 10-7 м; коллоидно-дисперсные (ультрамикро-гетерогенные) с частицами размером от 10-7 до 10-9м. Если фиксировать внимание на двух основных компонентах дисперсных систем, то одному из них следует приписать роль дисперсионной среды, а другому - роль дисперсной фазы. В этом случае все дисперсные системы можно классифицировать по агрегатным состояниям фаз.

 

Сложные реакции. Обратимые, параллельные, последовательные и цепные реакции.

Сложные реакции

Сложными называют химические реакции, протекающие более чем в одну стадию. Рассмотрим в качестве примера одну из сложных реакций, кинетика и механизм которой хорошо изучены:

2НI + Н2О2 ––> I2 + 2Н2О

Данная реакция является реакцией второго порядка; её кинетическое уравнение имеет следующий вид:

(II.28)

Изучение механизма реакции показало, что она является двухстадийной (протекает в две стадии):

1) НI + Н2О2 ––> НIО + Н2О

2) НIО + НI ––> I2 + Н2О


Поделиться с друзьями:

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.044 с.