Понятие, структура и границы биосферы. — КиберПедия 

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Понятие, структура и границы биосферы.

2017-08-23 362
Понятие, структура и границы биосферы. 0.00 из 5.00 0 оценок
Заказать работу

Биосфера — оболочка Земли, заселённая живыми организмами и преобразованная ими.

Самой большой экологической системой нашей планеты, занимающей всю ее поверхность, является биосфера. Биосфера, являясь глобальной экосистемой (экосферой), как и любая экосистема, состоит из абиотической и биотической части.

Абиотическая часть представлена: 1) почвой и подстилающими ее породами до глубины, где в них еще есть живые организмы, вступающие в обмен с веществом этих пород; 2)атмосферным воздухом до высот, на которых возможны еще проявления жизни; 3) водной средой океанов, рек, озер и т. п.

Биотическая часть состоит из сочетания всех живых организмов планеты: растений, животных, грибов, микроорганизмов. Они осуществляют важнейшую функцию биосферы – благодаря своему дыханию, питанию и размножению обеспечивают обмен веществ и энергии между всеми частями биосферы.

Биосфера как целостная система имеет определенные границы. В состав биосферы входят вся суша планеты Земля, поверхность и глубины морей, океанов и пресных наземных водоемов, полярные и высокогорные ледники. В состав биосферы также входит часть атмосферы тропосфера и нижняя часть стратосферы до озонового слоя (20–25 км от поверхности Земли), поскольку только до озонового слоя могут существовать живые организмы. В более высоких слоях все живое уничтожается кратковолновой ультрафиолетовой радиацией, которая рассеивается озоновым слоем. Нижняя граница биосферы распространяется до глубины 4,5–6 км под поверхность земли, где располагаются нефтеносные залежи. На такой глубине в нефтяных водах были выявлены микроорганизмы.

Данные современной науки позволяют выделить пять основных функций биосферы: энергетическую, газовую, концентрационную, деструктивную, средообразующую.

Энергетическая функция выполняется за счет аккумулирования зелеными растениями солнечной энергии в процессе фотосинтеза. Одна часть этой энергии перераспределяется между остальными компонентами биосферы, другая накапливается в отмершей органике, образуя залежи биогенного вещества (торфа, угля, нефти), а третья часть рассеивается.

Газовая функция обеспечивает газовый состав биосферы в процессах миграции и превращения газов, большая часть которых имеет биогенное происхождение.

Концентрационная функция заключается в избирательном извлечении и накоплении живыми организмами биогенных элементов из окружающей среды. Благодаря этой функции живые организмы могут служить для человека источником как полезных (витаминов, аминокислот), так и опасных для здоровья веществ (тяжелых металлов, радиоактивных элементов, ядохимикатов).

Деструктивная функция обуславливает процессы, связанные с разложением мертвой органики, с химическим разрушением горных пород и вовлечением образовавшихся веществ в биотический круговорот. В результате этого образуются биокосные и биогенные вещества, происходит минерализация органики, т.е. превращение ее в косное вещество.

Средообразующая функция состоит в трансформации химических параметров среды в условия, благоприятные для существования организмов. Она обеспечивает газовый состав атмосферы, состав осадочных пород литосферы и химический состав гидросферы, баланс веществ и энергии в биосфере, восстановление нарушенных человеком условий обитания.


17 Любой биоценоз включает несколько трофических (пищевых) уровней или звеньев, обеспечивающих обращение энергии в сообществе.

Первый уровень представлен растениями. Их называют автотрофами (от греч. autos – сам и trophe – питание) или продуцентами (от лат. producentis – создающий). Эти организмы потребляют неорганические компоненты окружающей среды и при помощи энергии солнца создают (продуцируют) органические вещества. Своеобразным «отходом» этого процесса, который называется фотосинтезом, является образование кислорода. Однако этот отход является жизненно важным для большинства живых организмов Земли.

Второй и последующие уровни представлены животными. Их называют гетеротрофами (от греч. геторос – другой) или консументами (от лат. consumo – потреблять). Их функцией является потребление органических веществ и их распределение в экосистеме.

Последний уровень в основном представлен бактериями и грибами, питающимися мертвым веществом. Их называют редуцентами (от лат. reducentis – возвращать). Они разлагают органическое вещество до исходных минеральных элементов, воды и некоторых газов.

В результате взаимодействия всех групп организмов в экосистеме возникает круговорот веществ.

 

В качестве примера рассмотрим круговорот азота — одного из важнейших химических элементов живых организмов. Азот является строительным материалом для белков, нуклеиновых кислот, компонентом АТФ, хлорофилла, гемоглобина и т.д.

Азот распространен в биосфере крайне неравномерно. В почве его содержится всего от 0,02 до 0,5 %, и то лишь благодаря деятельности микроорганизмов, некоторых растений и разложению органических веществ. В то же время миллионы тонн азота в атмосфере буквально давят на поверхность Земли. Над каждым гектаром почвы, образно говоря, «висит» до 80 тыс. т этого элемента. Несмотря на то что азота в атмосфере очень много (78 %), большинство растений не в состоянии ассимилировать его в молекулярном состоянии. «Элементом жизни» азот становится только в химических соединениях — легкорастворимых азотнокислых и аммиачных солях. Однако связанного (хотя бы в простые оксиды) азота в воздухе нет.

Исключением является поступление азота в атмосферу в результате выбросов автомобильного транспорта, тепловых электростанций, котельных, промышленных предприятий. При сжигании ископаемого топлива (нефть, уголь, газ) в атмосферу Земли происходит выброс оксидов азота (N20, N02), которые загрязняют окружающую среду.

Напрямую азот атмосферы способны использовать лишь немногие прокариотические (доядерные) организмы — некоторые виды бактерий и цианобактерий. Высшие растения могут использовать азот только в результате симбиотических взаимоотношений с азотфиксируюшими прокариотическими организмами — клубеньковыми бактериями, которые поселяются в тканях корней растений из семейства бобовых, таких как арахис, соя, чечевица, фасоль, люцерна, клевер, люпин и др. Фиксируя атмосферный азот, они снабжают растение-хозяин доступными для него соединениями азота в виде нитратов и нитритов.

Мертвые азотсодержащие органические вещества (белки, нуклеиновые кислоты, мочевина) разлагаются аммонифицирующими бактериями до аммиака. Он легко растворяется в воде. Часть его может поглощаться непосредственно растениями, часть вымывается из почвы, а оставшийся аммиак подвергается действию специализированных бактерий в результате процесса нитрификации - окисления азотсодержащих соединений. Корни растений получают нитриты и нитраты, образующиеся в ходе реакции

NH4+-> N02--> N03-

В природе осуществляется и обратный процесс — восстановление нитритов и нитратов до газообразных азотистых продуктов - денитрификация, В результате этого процесса денитрифицирующие бактерии восстанавливают ион NO3-до N2. Денитрификация происходит в несколько этапов:

N03--> N02->-N20 -> N2

Таким образом, в ходе денитрификации связанный азот удаляется из почвы и воды и в виде газообразного азота возвращается в атмосферу. Денитрификация замыкает цикл азота и препятствует накоплению его оксидов, которые в высоких концентрациях токсичны.

 

Вся земная жизнь основана на углероде. Каждая молекула живого организма построена на основе углеродного скелета. Атомы углерода постоянно мигрируют из одной части биосферы (узкой оболочки Земли, где существует жизнь) в другую. На примере круговорота углерода в природе можно проследить в динамике картину жизни на нашей планете.

Основные запасы углерода на Земле находятся в виде содержащегося в атмосфере и растворенного в Мировом океане диоксида углерода, то есть углекислого газа (CO2). Рассмотрим сначала молекулы углекислого газа, находящиеся в атмосфере. Растения поглощают эти молекулы, затем в процессе фотосинтеза атом углерода превращается в разнообразные органические соединения и таким образом включается в структуру растений. Далее возможно несколько вариантов:

· углерод может оставаться в растениях, пока растения не погибнут. Тогда их молекулы пойдут в пищу редуцентам (организмам, которые питаются мертвым органическим веществом и при этом разрушают его до простых неорганических соединений), таким как грибы и термиты. В конце концов углерод вернется в атмосферу в качестве CO2;

· растения могут быть съедены травоядными животными. В этом случае углерод либо вернется в атмосферу (в процессе дыхания животных и при их разложении после смерти), либо травоядные животные будут съедены плотоядными (и тогда углерод опять же вернется в атмосферу теми же путями);

· растения могут погибнуть и оказаться под землей. Тогда в конечном итоге они превратятся в ископаемое топливо — например, в уголь.

В случае же растворения исходной молекулы CO2 в морской воде также возможно несколько вариантов:

· углекислый газ может просто вернуться в атмосферу (этот вид взаимного газообмена между Мировым океаном и атмосферой происходит постоянно);

· углерод может войти в ткани морских растений или животных. Тогда он будет постепенно накапливаться в виде отложений на дне Мирового океана и в конце концов превратится в известняк (см. Цикл преобразования горной породы) или из отложений вновь перейдет в морскую воду.

Если углерод вошел в состав осадочных отложений или ископаемого топлива, он изымается из атмосферы. На протяжении существования Земли изъятый таким образом углерод замещался углекислым газом, попадавшим в атмосферу при вулканических извержениях и других геотермальных процессах. В современных условиях к этим природным факторам добавляются также выбросы при сжигании человеком ископаемого топлива. В связи с влиянием CO2 на парниковый эффект исследование круговорота углерода стало важной задачей для ученых, занимающихся изучением атмосферы.

Составной частью этих поисков является установление количества CO2, находящегося в тканях растений (например, в только что посаженном лесу) — ученые называют это стоком углерода. Поскольку правительства разных стран пытаются достичь международного соглашения по ограничению выбросов CO2, вопрос сбалансированного соотношения стоков и выбросов углерода в отдельных государствах стал главным яблоком раздора для промышленных стран. Однако ученые сомневаются, что накопление углекислого газа в атмосфере можно остановить одними лесопосадками.

 


19)


Поделиться с друзьями:

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.013 с.