Современные представления о механизмах возникновения новых генов — КиберПедия 

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Современные представления о механизмах возникновения новых генов

2017-07-31 214
Современные представления о механизмах возникновения новых генов 0.00 из 5.00 0 оценок
Заказать работу

В Интернете была обнаружена полная версия весьма свежего обзора (2003 г.; «Nature Review Genetics»), о котором мы уже упоминали [40]. Он написан группой из трех авторов из двух университетов США и примкнувшим к ним исследователем из АН Китая. Все, включая последнего, – из научных подразделений, изучающих вопросы генетики и/или эволюции (в том числе на молекулярном уровне).

В Сети имеются и еще два обзора по эволюции генов тех же основных авторов из США – более ранний 2002 г. [44] и вновь 2003 г. [45] (журнал «Genetica», Нидерланды).

Названия указанных работ следующие: «Происхождение новых генов: взгляд на старые и новые представления» («The origin of new genes: glimpses from young and old») [40], «Распространение в геноме кодирующих участков путем приобретения новых генов» («Expansion of genome coding regions by acquisition of new genes») [44] и «Происхождение новых генов: экспериментальные и расчетные свидетельства» («Origin of new genes: evidence from experimental and computational analyses») [45].

Эти обзоры произвели весьма солидное и благоприятное впечатление. Множество проанализированных источников – свежие (целый ряд – 2002-2003 гг.). Можно надеяться, что все «разложено по полочкам». Похоже, что механизмы образования новых генов разобраны тщательно и, на настоящий момент, полно (вряд ли с 2003 г. что-нибудь существенно изменилось). Все они, конечно, рассматриваются в эволюционном аспекте.

Что понимается в указанных обзорах под «новыми генами» и насколько они отличаются от «старых», мы исследовать не будем – необходимо проанализировать массу конкретных оригинальных статей, которые послужили материалом для обзоров. Хотя даже на поверхностный взгляд по опубликованным в тех обзорах таблицам и видно, что подавляющее большинство упомянутых «новых генов» и «новых белков» являются изоформами (модификациями) «старых» генов и соответствующих им белков, все-таки поверим авторам. Раз они их называют «новыми», пусть таковыми и будут.

Ваш покорный слуга наметил в перспективе рассмотреть данный вопрос в другом обзоре.

Рассмотрим, если Господу угодно будет.

Итак, каковы же известные на современном этапе механизмы образования «новых» генов?

Таких механизмов оказалось семь, однако шесть из них связаны с изменениями и/или умножениями кодирующей информации уже существовавших, «старых» генов. Кратко перечислим их, хотя и будут, конечно, некоторые специальные термины. Отметим, что для каждого механизма в обзоре представлены примеры экспериментальных подтверждений, причем многие – даже для высших эукариот (многоклеточных организмов).

1) Перетасовка экзонов (Exon shuffling). Надо сказать, что гены эукариот состоят из кодирующих (экзоны) и некодирующих (интроны) участков. Последние вырезаются при сплайсинге (конечный этап созревания РНК после считывания с матрицы ДНК). При перетасовке экзонов происходит как бы изменение расположения частей гена по отношению друг к другу и, соответственно, ген может функционировать по-другому. Правда, нередко не совсем по другому: иной раз получаются мозаичные белки, где разные их части просто перетасованы. Как видим, здесь, вероятно, не появляется ни качественно новых генов, ни качественно новых белков. Этому механизму отводится главная роль [40, 44, 45].

2. Удвоение гена (Gene duplication). Отмечается, что дуплицированный ген может приобретать новые функции, в то время как его исходная копия продолжает выполнять исходные. От себя отметим: наверное, известная амплификация (умножение копий гена, например, резистентности к неблагоприятному фактору) является частным случаем этой дупликации. Снова можно сказать, что идет какое-то изменение или умножение уже имеющегося гена, а не образование совершенно нового.

3. Ретропозиция (Retroposition) или, как указывается, включение дуплицированного гена в новую позицию в геноме путем обратной транскрипции. Здесь нам надо уяснить только, что снова происходит считывание уже имевшейся генной информации с новым типом включения ее в геном.

4. Образование генной вставки путем включения мобильного элемента или транспозона (Mobile element; transposone). Мы уже говорили, что мобильные элементы являются фрагментами ДНК из нескольких генов или некодирующих последовательностей. Они как бы «гуляют» вдоль ДНК или между клетками разных бактерий, встраивая свои мобильные гены на новые места, где те способны работать по-другому. Но это «по другому» снова не значит, что приобретается абсолютно новая генная информация, возникшая из негенной.

5. Горизонтальный транспорт генов (Lateral gene transfer) – передача генной информации от клетки к клетке. Процесс продемонстрирован для микроорганизмов и растений. В обзоре [40] предполагается, что он может быть важен и для эволюции высших организмов. Понятно, что при передаче генов новые не появляются.

6. Слияние/расщепление генов (Gene fusion/fission). Два смежных гена могут сливаться в единый при транскрипции, через делецию или мутацию трансляционного стоп-кодона, и использовать сигнал терминации транскрипции в расположенном далее гене. Наоборот, единый ген может разделяться на два отдельных гена, хотя механизм этого не ясен. Идентифицирован ряд случаев генного слияния у прокариот; имеются данные и для высших эукариот, в том числе для генов человека.

Здесь мы как будто встречаем формирование новых генов, но вновь ясно, что никакая информация не появляется «из ничего». Происходит считывание в виде единого гена информации сразу с двух генов («слияние») или в виде нескольких генов с разных частей одного гена («расщепление»). И тут гены возникают из других кодирующих участков.

Наконец, особо интересующий нас 7-й механизм: возникновение генов de novo, т.е. заново, из ранее некодирующих последовательностей. О нем упомянуто только в одном обзоре из трех названных выше [40], причем в самом конце перечисления. Этому механизму уделены три строчки и сказано, что появление гена de novo явление крайне редкое, что для целого гена оно встречается еще реже и более характерно для частей гена. Правда, далее в обзоре [40] возникновение генов de novo все же немного обсуждается и приведены несколько примеров: один ген дрозофилы (Sdic) [46, 47] и ген, кодирующий антифризный белок у антарктических полярных рыб [48-51]. Упоминается также, что по сходному механизму возникают и гены, кодирующие не белки, как подавляющее большинство генов, а специальные, необычные РНК в нейронах головного мозга грызунов [52, 53].

Для дрозофилы и рыб мы видим, однако, что указанные гены, как предполагают, возникли не просто из какой-то «негенной» последовательности, а из сигнальной или интрона предсуществовавшего гена. Так, ген Sdic плодовой мушки является примером быстрых изменений генной структуры: две его половины сливаются вместе из двух родительских генов. Полагают, что интрон от одного родительского гена трансформируется в последовательность экзона, а прежняя последовательность экзона изменяется в промотор и регулирующие последовательности, приобретая новые функции в жгутиках спермы дрозофилы [46, 47].

Для антифризного белка антарктических рыб отмечено, что появление участка гена из предсуществовавшего интрона гена трипсиногена вероятно [40]. Исходная последовательность, из которой произошло возникновение части нового гена, кажется весьма короткой (9 нуклеотидов). На родство же с геном трипсиногена указывает существование химерного гена, кодирующего одновременно как тот антифризный белок, так и трипсиноген. В то же время, у арктических рыб ген аналогичного белка, в отличие от антарктических, не имеет последовательности, идентичной гену трипсиногена [48-51].

Что же касается примеров с необычными генами, кодирующими специальные РНК [52, 53], то обращение к первоисточникам продемонстрировало следующее. Эти гены, по-видимому, являются результатом альтернативного сплайсинга (если сказать просто – то см. выше механизм 6), когда между двух экзонов происходит вставка мобильного элемента (транспозона) – конкретно Alu для BC200 РНК (Alu распространен в геноме человека и грызунов) [53] или повтора ID для BC1 РНК [54]. Скажем здесь, что столь известные и популярные ныне мобильные элементы Alu (входящие в состав 5% генов человека [40]) сами имеют своим источником генную информацию – они произошли из гена, кодирующего 7SL РНК [55].

Понятно, что столь необычные гены, которые кодируют не белки, а РНК, – это не совсем удачный пример механизма макроэволюции генома. Такие гены – слишком «частный случай», и нас должны интересовать другие экспериментально показанные факты происхождения генов de novo, из некодирующих последовательностей. Как было видно выше, во всех трех свежих обзорах молекулярных генетиков-эволюционистов имеется всего два таких примера: ген дрозофилы [40, 46, 47] и ген антифризного белка антарктических рыб [40, 48-51], фрагменты которых могут иметь своим источников некодирующие участки – интроны.

Автор представленного вам обзора начал искать и другие аналогичные примеры. Вот лекция on-line по молекулярной биологии зарубежного автора доктора Дугласа Смита, которая (лекция) называется: «Эволюция генома» [56]. Основной упор сделан на дупликации уже предсуществовавших генов. Ни о каком происхождении генной информации из некодирующих участков ДНК не идет и речи, хотя, конечно, в эволюционном развитии геномов доктор Д. Смит не сомневается.

А вот еще обзор 2002 г. по эволюции генома (немецкие авторы) [57]. Рассмотрено происхождение геномов бактерий. Помимо уже известных нам механизмов, связанных с умножением, перетасовкой, перегруппировкой и передачей уже имеющейся генной информации, упоминается и о возможности генезиса (возникновения) генов de novo, но данных о подобных генах авторы [57] не привели.

Наконец, процессы эволюции генома в подробнейших схемах, представленные на одном из зарубежных научных (или учебных) сайтов [58]. Происхождение из интронной последовательности отсутствует, хотя и приведен механизм, связанный с альтернативным сплайсингом вкупе со вставкой между экзонами мобильного элемента – Alu. Указано, правда, что это – эволюция «нефункциональных» семейств генов. И, кроме того, мы уже знаем, что сам транспозон Alu произошел из кодирующего гена [55].

Но вот попалась работа 2003 г. бывших россиян – молекулярных биологов, работающих в США (про одного из них мне известно, что он там с очень давних пор) [59]. Даже в названии указано, что статья в том числе – о возникновении функциональных (кодирующих) частей генов из ранее интронных последовательностей. Оказалось, однако, что работа во многом теоретическая. Так, разобран механизм возникновение фрагмента новой кодирующей последовательности из примыкающего к экзону интрона при «сдвиге рамки считывания» (см. выше) и приведены четыре примера генов (в том числе генов человека), для которых имеются гомологии фрагментов последовательностей с интронными. Но ссылок на оригинальные работы нет: бывшие россияне просто привели собственные расчеты и прикидки на базе мировых данных для последовательностей ДНК известных генов.

И кажется лишним упоминание о том, что ни один из представленных отставными российскими [59] примеров не упоминается в каком-либо другом разобранном нами обзоре по эволюции генома [40, 44, 45, 57]. По крайней мере, в контексте «интронной гипотезы» (а экспериментальные объекты в соответствующих списках литературы я не сверял).

Тем не менее, вашему покорному слуге все-таки встретился в литературе еще один пример. А именно: образование нового экзона из гена рецептора тиреоидного гормона и гена вируса, когда также предполагают формирование кодирующей последовательности из интрона (статья 1992 г. [60]). Этому явлению, ясно, придается широкий эволюционный смысл [60].

Лично мне малопонятно: почему в обзоре 2003 г. [40], когда собирали единичные данные о возникновении новых генов de novo, забыли про работу 1992 г. [60]. И малопонятно, почему бывшие российские в своем труде 2003 г. [59] не привели примеры с генами белков дрозофилы, антарктических рыб и с генами тех необычных РНК нейронов. Странно: ведь каждый даже предположительный пример возникновения генов de novo, из первоначально интронных последовательностей, молекулярным эволюционистам должен быть крайне важен. Впрочем авторам обзора [40], как конкретным специалистам, виднее: может, результаты работы 1992 г. [60] позже не подтвердились.

Итак, что же показал наш кажущийся вполне репрезентативным и информативным поиск? А он показал, что, несмотря на все развитие молекулярной генетики, два-три гена – это пока, видимо, все, что касается обоснованных предположений конкретно молекулярных генетиков-эволюционистов о возникновении новых генов из ранее некодирующих последовательностей ДНК. Да и то – полагают, что эти гены (скорее, их части) возникают все-таки из частей уже существовавших генов (из интронов). Пример же с появлением гена одной формы РНК нейронов путем альтернативного сплайсинга с участием транспозона Alu сюда не годится: сам Alu исходно произошел из гена [55]. Правда, остается еще одна форма РНК нейронов, ген которой имеет вставку последовательности ID [54]. Источник последней же мне неизвестен.

Ладно: пусть будет три-четыре примера происхождения из «некодирующего», а не два-три.

 

* * *

Черновая расшифровка генома человека (полностью идентифицирована только последовательность нуклеотидов) продемонстрировала, что, в отличие от бактерий, некодирующих последовательностей в нем более чем на порядок больше, чем генов. Однако и генов много больше, чем у бактерий и дрожжей, и те генные локусы сложнее [4]. Информации же закодировано и вовсе неизмеримо больше. В научно-популярной литературе и в СМИ можно встретить утверждения типа: мы, дескать, по своему геному на 60% сходны с дрозофилой и на 90% – с мышью. Это является неправильной интерпретацией результатов черновой расшифровки генома человека: если для дрожжей, дрозофилы и мыши все их гены известны, то для человека – далеко нет, а те, что известны, часто идентифицированы именно по гомологии с уже открытыми генами дрожжей, мышей и дрозофилы. Точно установленных генов человека 22.000, канонизировано порядка 31.000 [4], но есть сообщения некоторых мировых лабораторий о том, что у них имеется база данных на 120.000 и даже 140.000 генов. Интуитивно же многие эксперты склоняются к тому, что потолок генома у Homo sapiens – 120 тыс. генов [61].

Отсюда вопрос: поскольку основными механизмами возникновения новых генов является перегруппировка, перетасовка и умножение уже имеющейся кодирующей генной информации, то возможно ли путем такого «Тришкиного кафтана» самопроизвольное (пусть и под контролем естественного отбора) столь невероятно большое увеличение информации в количественном и качественном смысле как, скажем, путь от генома дрожжей и дрозофилы до генома человека? Ведь «интронной гипотезой» мы пока что можем пренебречь, поскольку имеем всего два-три таких примера (для генов, кодирующих белки), в то время как примеров возникновения генов из уже предсуществующих кодирующих последовательностей, согласно молекулярным генетикам-эволюционистам, много больше, и такие механизмы встречаются гораздо чаще. Некоторые из них даже называют «основными» [40, 44, 45, 56-58].

Ряд математиков и биофизиков, в том числе специалистов по информатике, стоящих на креационных позициях, утверждают однозначно: такое значительное самопроизвольное увеличение информации из уже имевшей место невозможно [3, 8, 9, 62-64] (есть и другие примеры). Автор представленного вам обзора не является ни математиком, ни специалистом по информатике, однако на уровне своей интуиции чувствует, что все это именно так. Вот только выразить в математических терминах не удается. В голове же крутится фраза из «Короля Лира»: «Из ничего не выйдет ничего».

Вот, и опрошенные мною специалисты-программисты, верящие в эволюцию, оказались не способны придумать нормальных примеров того, чтобы информация усложнялась сама по себе. Я спрашивал неких авторитетных, среди своих родных. Они сразу начинают приводить в пример компьютерные программы, которые так созданы, что способны усложняться сами по себе. Им говоришь: ну, а сами-то компьютерные программы кто создал? Не ваш ли разум? Неужели ваш разум – это нечто сродни слепому естественному отбору? Но они такого почему-то не понимают.

И подведем итог разделу: достаточно углубленный анализ конкретных экспериментальных работ из области именно молекулярной эволюции продемонстрировал, что гены, называемые новыми, образуются в подавляющем большинстве случаев только из старых, кодирующих последовательностей. То есть, из уже имеющейся генной информации. В крайнем, чрезвычайно редком случае – из некодирующих частей, но кодирующих генов. Можно ли даже предполагать, что более простой геном способен эволюционировать в неизмеримо больший по размеру и более сложный? Мне, как и креационистам математикам и информатикам [3, 8, 9, 62-64], подобная Тришкина гипотеза кажется невероятной.

 

Заключение

Проведен анализ оригинальных экспериментальных работ и обзоров из области молекулярной эволюции на предмет того, что мутации являются материалом для макроэволюции, а генная информация возникает из негенной (некодирующих участков ДНК). Обнаружено, что, применительно к наиболее яркому примеру эволюционных преобразований микроорганизмов – развитию устойчивости к антибиотикам – на настоящий момент в доступной научной литературе отсутствуют факты каких-либо прогрессивных мутаций и возникновения новых генов. Все адаптивные мутации, обусловливающие приспособление к антибактериальным препаратам, оказались деструктивными, как это и указано вкратце, без научной конкретики и примеров, в трудах креационистов.

В трудах молекулярных эволюционистов рассмотрены современные представления о механизмах образования новых генов. Вопрос о том, насколько эти гены и кодируемые ими белки действительно «новые», является отдельной проблемой (которая здесь не рассматривается), хотя на поверхностный взгляд и создается впечатление, что большинство генов и белков, называемых «новыми», являются модификациями и изоформами «старых».

Шесть из семи известных на современном этапе молекулярно-генетических механизмов образования тех новых генов обусловлены модификацией, перегруппировкой, перетасовкой и умножением уже имеющейся генной информации и уже имеющихся кодирующих последовательностей ДНК. Согласно взглядам самих молекулярных генетиков-эволюционистов, главными механизмами являются как раз указанные, а процесс возникновения генов de novo, т.е. «заново», из ранее некодирующих последовательностей – это крайне редкое явление, причем еще более редкое для целых генов, а не для их частей. К 2003 г. включительно автором настоящего обзора обнаружено всего два-три обоснованных экспериментальных примера, для которых имеются основания полагать, что части генов, кодирующих белки, образовались de novo, из последовательностей ДНК, ранее не несущих генной информации. Однако и в этих случаях предполагается происхождение из частей ранее существовавших генов, хотя и из частей некодирующих (интронов).

Возникновение неизмеримо более сложных и бóльших по размеру геномов в процессе прогрессивной макроэволюции (от низших организмов к высшим), сопровождающееся самопроизвольным (хоть и под контролем естественного отбора) увеличением объема генетической информации путем различных модификаций и умножений уже имеющейся, с позиций информатики и даже логики должно представляться невероятным.

 

* * *

Здесь мы закончим сухое реферативное резюме. После всего кажется странным, как могут рассуждать о макроэволюции, да еще спрашивать, почему в ней сомневаются креационисты. Вот из уже цитированной достаточно наукообразно изложенной работы [42]:

«Уместно спросить у креационистов, а что, собственно, надо было бы наблюдать, чтобы они «поверили» в реальность макроэволюции? Непосредственно мы не видим макроэволюцию, ибо она слишком медленна, чтобы какие-либо изменения были зафиксированы за время существования человеческой цивилизации».

Вспомним, что для какой-либо макроэволюции, как утверждается, необходимы десятки и сотни миллионов лет [1], а что касается бактерий, для которых, теоретически, период должен снижаться до наблюдаемого лабораторно, – то они почему-то по природе своей ныне не способны к макроэволюции [42].

Все эти странные вещи в наукообразных терминах и схемах находят себе различного рода объяснения, гипотезы и теории в трудах эволюционистов разного ранга – от академика И.И. Шмальгаузена [65] до создающих пособия по биологии [1]. Объяснить можно все. Однако скажем: исследователь в области экспериментальных дисциплин имеет особый подход к гипотезам и теориям. Нас не удивить и не устрашить фразами, терминами, предположениями, гипотезами и схемами, как бы наукоподобно и внешне стройно они ни были изложены и какой бы профессор или там академик их ни излагал. Придумать из головы можно все, но нам подавай реальные, экспериментальные обоснования, хоть какие-нибудь, хоть косвенные, но корректно полученные и интерпретированные. И чтобы эти обоснования не были бы единичными исключениями в массе прочего, как с теми двумя-тремя генами, что, возможно, частично возникли из интронов. Если же этого нет, а почти всё накопленное косвенное [ так ] свидетельствует об обратном утверждаемому – тогда, уж извините, нам профессора и академики не указ.

Именно подобная история имеет место с эволюционной (конкретно – с макроэволюционной) теорией: масса пособий, трудов, слов и положений, про которые думают, что они от частого повторения становятся истиной. Всему этому учат на уроках биологии, и даже делают фоном компьютерных кино про динозавров.

Но ведь, согласно восточной пословице, сколько ни говори: «Халва!», во рту слаще не станет.

Забывают данную мудрость.

Забывают, что прежде чем пускаться в сложные рассуждения о, хотя и редких, но «прогрессивных мутациях», об образовании «новых генов» и т.п., необходимо ознакомиться хотя бы с имеющимися экспериментальными фактами – а их благодаря прогрессу в области молекулярной биологии и генетики за последние 10-15 лет накопилось не так уж мало.

Впрочем, здесь эволюционисты, благодаря своим периодам «в сотни миллионов лет», занимают беспроигрышную позицию. Строго научно их опровергнуть нельзя: невозможно ни наблюдать, ни опыт соответствующий поставить, поскольку те условия и миллионы лет не смоделируешь. Ну, а то, что почти вся совокупность косвенных данных экспериментов и феноменологических наблюдений из разных дисциплин, если их корректно разобрать используя общепринятую научную методологию, макроэволюционные построения и самопроизвольную прогрессивную эволюцию отвергают – не доказательство, если подходить строго. Эволюционисты очень любят говорить нечто вроде: «Конечно, мы пока еще далеко не все объяснить можем, но это на истинности нашей теории никак не отражается!» (см., например, [42], встречал такое еще множество раз).

Ничего себе не отражается: важных даже косвенных, если корректно подходить, подкреплений ниоткуда нет, а нормальных объяснений и вовсе ожидать нельзя, поскольку теория противоречит установленным законам природы.

Вот, написал я эти строки, а потом еще раз перечитал креационное исследование докторов К. Виолована и А. Лисовского «Проблемы абиогенеза как ключ к пониманию несостоятельности эволюционной гипотезы» [66]. Авторы, углубленно рассматривая детали молекулярной генетики живого, убедительно демонстрируют нам, что и генетический код-то не един в мире живых организмов (а, значит – как они друг от друга произошли-то?), и что простейший живой объект самопроизвольно образоваться и воспроизводиться не способен, и что информация сама по себе не возникнет в хаосе «первичного бульона». И т.д., и т.п. Многие модные молекулярно- и информационно-эволюционные гипотезы в [66] разобраны, которыми неискушенного человека нынешние большие ученые устрашить пытаются. И за что же вы думаете эволюционисты докторов К. Виолована и А. Лисовского в первую очередь критикуют? Догадайтесь с первого раза, а если не можете, то вот цитата:

«На мой взгляд, Ваша работа имеет один очень серьезный недостаток: она акцентирует внимание на тех трудностях объяснения происхождения жизни, которые эволюционисты (как Вы их называете) хорошо понимают.

Специалисты хорошо понимают проблему происхождения генетического кода и механизма трансляции... Резюмируя обсуждение указанного недостатка Вашей работы, можно сказать, что Ваша работа бьет мимо цели: Вы заостряете ту проблему, которая хорошо известна...

Теперь о «потенциальном достоинстве» вашей работы. Я думаю, что то, что Вы заострили проблему происхождения минимального живого организма, прозвучало бы сильно, если бы Вы наметили пути конструктивного решения данной проблемы» [66].

Это автор лекций по биокибернетике В.Г. Редько высказался.

Не знаю, как вам, но мне весьма характерной структура его мышления кажется.

Ведь для обычного исследователя-экспериментатора ничего не остается ни фактически, ни теоретически от теории биогенеза и молекулярной макроэволюции, если все факты, касающиеся особенностей строения и, главное, функционирования геномов и других структур живого, которые доктора К. Виолован и А. Лисовский привели, истинными являются. Ибо тогда самопроизвольное возникновение и «прогрессивное развитие» всего такого законам природы и даже логики отчетливо противоречит.

Но для биокибернетика подобные факты не указ, хоть он их и не отрицает. Мы, эволюционисты, дескать, и сами понимаем, что факты нашим теориям противоречат («трудности у нас тут»). Однако на нашу веру в теории биогенеза и макроэволюции данная конфузия никак повлиять не способна. И лучше бы вы, г-да Виолован и Лисовский, вместо критики своей помогли бы нам такие объяснения придумать, которые бы, с одной стороны, природе не противоречили, а с другой – нашу веру подкрепили.

Не понимает В.Г. Редько, что в статье [66] как раз о том, что подобное совмещение никак невозможно, говорится. Характерно его непонимание.

Просит он докторов Виолована и Лисовского: «Помогите с конструктивным решением».

Как будто указанные доктора Господа Бога заменить способны.

Странная логика. Наверное, как у антиподов античных. Все с ног на голову.

«Там обитают… совсем безголовые (анэнцефалы)…» (Геродот. «История». V в. до н. э.).

При такой логике никому ничего доказать даже научно нельзя (об этом пишет и сам В.Г. Редько: «Ваша работа бьет мимо цели»). У людей вера слепая, мракобесная, схоластическая, хоть и в наукоподобных терминах выражаемая. Тут все бесполезно. Фанатизм. Правда, если признавать абсолютную необходимость в десятках и сотнях миллионов лет для макроэволюции, то это суеверие действительно строго научно опровергнуть невозможно, как и исходный постулат о первичности материи.

Тем более, что они всей структурой и, главное, духом «нового мирового порядка» прямо или косвенно поддерживаются.

Вспоминается, что в XVI-XVII вв. ученые были абсолютно уверены в возможности самозарождения живых существ. Считалось, например, что мыши сами собой возникают из грязного белья и пшеницы. Опыты ставили: завернут в грязное белье пшеницу, кинут в чулан, и, действительно, скоро мыши появляются. Вот как описал этот «эксперимент» исследователь Ван-Гельмонт в начале XVII в. (цитировано по [67]; в сокращении):

«… если вы набьете глиняный кувшин грязным нижним бельем, добавив туда некоторое количество пшеницы (ее можно заменить куском сыра), то приблизительно через двадцать один день закваска, находящаяся в белье, проникает сквозь пшеничную шелуху и превращает пшеницу в мышь. Что замечательно, так это то, что из пшеницы или сыра возникают мыши обоих полов... Но еще более замечательно то, что мыши, возникающие из пшеницы и нижнего белья, являются не детенышами и даже не недоразвитыми копиями нормальных мышей, а уже сразу взрослыми мышами!»

Конечно, теория о самозарождении мышей со временем пришла в противоречие с накопленными фактами. Кто-то, наверное, наконец-то провел корректный опыт – с затыканием в чулане всех дыр, и мыши из белья и пшеницы не появились. Теорию отбросили.

Но мы вполне можем представить себе даже сейчас, как некий большой ученый говорит нам: «Да, мыши действительно возникают из грязного белья и пшеницы – это научно доказанный еще Ван-Гельмонтом факт. Вот только такое редко бывает – один раз в десять тысяч лет, и Ван-Гельмонту просто повезло. А то, что более никакие опыты этот факт не подтверждают, ни о чем не свидетельствует – множество опытов в течение десятков тысяч лет провести надо, и тогда, возможно, получится».

Нечто вроде этого происходит и с теорией макроэволюции. Скажите, можем ли мы с вами со всем аппаратом и всеми данными современной науки строго научно доказать, что мыши из грязного белья и пшеницы зарождаться не способны, если это, как будут утверждать, по прикидкам один раз в десять тысяч лет происходит? Не сможем: сколько бы мы ни ставили разных опытов с отрицательными результатами, тот большой ученый всегда будет утверждать с иронией (вроде как в [42]; см. выше цитату), что ничего не доказано, поскольку мыши всего один раз за очень длительный период времени самозарождаются, если в грязное белье пшеницу поместить.

Теперь представим, как теория о самозарождении мышей в научные труды, а потом и в учебники по биологии попала и стала там аксиомой. И что всех, начиная с детского сада и школы, уверяют в полной ее истинности и в наличии строгих научных обоснований. И говорят, что раз многие имеющие вес профессора и академики в истинности той теории уверены, то и нам ничего не остается, как в самозарождение мышей поверить.

Что вы на это скажете? А скажете, наверное, что здесь лженаука и суеверие, хотя даже академики к сему руку приложили. Почему вы так скажете? Какие у вас будут основания, если априори отсутствуют строго научные опровержения? А такие будут основания, что все накопленные до сих пор данные из биологии и медицины, все законы природы, а также результаты наблюдений многих людей, не позволяют вам поверить в самозарождение мышей из грязного белья и пшеницы.

Если вы в разуме, а в Творца верить все-таки не желаете, то вы скорее, как наш профессор (см. выше раздел 2), поверите в следующее. В то, что тех «самозародившихся» мышей инопланетяне через стенку чулана транспонировали, чтобы вознаградить нас за пшеницу и белье, которые им, инопланетянам, почему-то очень интересными показались.

 

СПИСОК ЛИТЕРАТУРЫ

 

1. Вахненко Д.В., Гарнизоненко Т.С., Колесников С.И. Биология с основами экологии: Учебник для вузов. Ростов н/Д: изд-во «Феникс», 2003. – 512 с.

2. Ичас М. О природе живого: механизмы и смысл: Пер. с англ. М.: Мир, 1994. – 496 с.

3. Виланд К. Камни и кости. Симферополь: Паломник. 2000. – 48 с.

4. Новости медицинской генетики (изложение результатов сиквенса генома человека, опубликованных в: Human genomes, public and private. Nature, 2001, № 6822, p. 745) // Бюлл. Росс. Общ. Мед. Генет. 2001. №№ 2. http://www.medgen.ru/rsmg/bull14.htm.

5. Яблоков А.В., Юсуфов Ф.Г. Эволюционное учение. М.: Высшая школа, 1981. – 344 с.; переиздана в 1989 г.

6. Льюин Б. Гены / Пер. с англ. под ред. Г.П. Георгиева. М.: Мир. 1987. – 544 с.

7. Збарский И.Б. Организация клеточного ядра. М.: Медицина. 1988. – 368 с.

8. Хэм К., Сарфати Дж., Виланд К. Книга ответов. Симферополь: Христианский научно-апологетический центр. 2000. –282 с.

9. Бейкер С. Камень преткновения. Верна ли теория эволюции? М.: Протестант. 1992. – 40 с.

10. Cantrell C. DNA Demands Creation By Design. In: Creation... The Science // http://hauns.com/~DCQu4E5g/DNA.html.

11. Юнкер Р., Шерер З. История происхождения и развития жизни. Основные положения и понятия для уроков биологии. Пер. с нем. СПб.: КАЙРОС, 1997. – 264 с.

12. Davies J. Inactivation of antibiotics and the dissemination of resistance genes // Science. 1994. V. 264. № 5157. P. 375-382.

13. McManus M.C. Mechanisms of bacterial resistance to antimicrobial agents // Am. J. Health Syst. Pharm. 1997. V. 54. № 12. P. 1420-1433.

14. Skurray R.A., Firth N. Molecular evolution of multiply-antibiotic-resistant staphylococci // Ciba Found. Symp. 1997. V. 207. P. 67-83.

15. Ramaswamy S., Musser J.M. Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update // Tuber Lung Dis. 1998. V. 79. № 1. P. 3-29.

16. Maiden M.C. Horizontal genetic exchange, evolution, and spread of antibiotic resistance in bacteria // Clin. Infect. Dis. 1998. V. 27. Suppl. 1. P. S12-S20.

17. Hakenbeck R., Grebe T., Zahner D., Stock J.B. Beta-lactam resistance in Streptococcus pneumoniae: penicillin-binding proteins and non-penicillin-binding proteins // Mol. Microbiol. 1999. V. 33. № 4. P. 673-678.

18. Foster P.L. Adaptive mutation: implications for evolution // Bioessays. 2000. V. 22. № 12. P. 1067-1074.

19. Hashimoto H. Molecular biology of the mechanism of acquisition of antimicrobial-resistance // Nippon Rinsho. 2001. V. 59. № 4. P. 660-665.

20. Davis D.R., McAlpine J.B., Pazoles C.J. et al. Enterococcus faecalis multi-drug resistance transporters: application for antibiotic discovery // J. Mol. Microbiol. Biotechnol. 2001. V. 3. № 2. P. 179-184.

21. Normark B.H., Normark S. Evolution and spread of antibiotic resistance // J. Intern. Med. 2002. V. 252. № 2. P. 91-106.

22. Blazquez J., Oliver A., Gomez-Gomez J.M. Mutation and evolution of antibiotic resistance: antibiotics as promoters of antibiotic resistance? // Curr. Drug Targets. 2002. V. 3. № 4. P. 345-349.

23. Johnston N.J., Mukhtar T.A., Wright G.D. Streptogramin antibiotics: mode of action and resistance // Curr. Drug Targets. 2002. V. 3. № 4. P. 335-344.

24. Poole K. Mechanisms of bacterial biocide and antibiotic resistance // Symp. Ser. Soc. Appl. Microbiol. 2002. V. 31. P. 55S-64S.

25. Levy S.B. Active efflux, a common mechanism for biocide and antibiotic resistance // Symp. Ser. Soc. Appl. Microbiol. 2002. V. 31. P. 65S-71S.

26. Russell A.D. Introduction of biocides into clinical practice and the impact on antibiotic-resistant bacteria // Symp. Ser. Soc. Appl. Microbiol. 2002. V. 31. P. 121S-135S.

27. Hogan D, Kolter R. Why are bacteria refractory to antimicrobials? // Curr. Opin. Microbiol. 2002. V. 5. № 5. P. 472-427.

28. de Souza C.P. Pathogenicity mechanisms of prokaryotic cells: an evolutionary view // Braz. J. Infect. Dis. 2003. V. 7. № 1. P. 23-31.

29. Roberts M.C. Tetracycline therapy: update // Clin. Infect. Dis. 2003. V. 36. № 4. P. 462-467.

30. Megraud F. Antibiotic resistance in Helicobacter pylori infection // Br. Med. Bull. 1998. V. 54. № 1. P. 207-216

31. Hashimoto H. Acquisition of antibiotic-resistance in bacteria by alteration of molecular target, or by the decreased permeability // Nippon Rinsho. 1997. V. 55. № 5. P. 1167-1172.

32. Hotta K. Biochemical and genetic mechanisms for bacteria to acquire aminoglycoside antibiotic resistance // Nippon Rinshoю 1997. V. 55. № 5. P. 1231-1237.

33. Thomas D.E. Arguing against the resolution, on behalf of NMSR. In: Genetics and biochemistry do not admit evolution as science. October 2000 // www.nmsr.org\essay3a.htm.

34. Kinoshita S., Terada T., Taniguchi T. et al. Purification and characterization of 6-aminohexanoic-acid-oligomer hydrolase of Flavobacterium sp. Ki72 // Eur. J. Biochem. 1981. V. 116. № 3. P. 547-551.

35. Ohno S. Birth of a unique enzyme from an alternative reading frame of the preexisted, internally repetitious coding sequence // Proc. Natl. Acad. Sci. U.S.A. 1984. V. 81. № 8. P. 2421-2425.

36. Prijambada I.D., Negoro S., Yomo T., Urabe I. Emergence of nylon oligomer degradation enzymes in Pseudomonas aeruginosa PAO through experimental evolution // Appl. Environ. Microbiol. 1995. V. 61. № 5. P. 2020-2022.

37. Christian Forums is a free, non-profit and non-denominational Christian forum community uniting all Christians as one body // www.christianforums.com\t15898&page_30.htm.

38. Negoro S. Biodegradation of nylon oligomers // Appl Microbiol Biotechnol. 2000. V. 54. № 4. P. 461-466.

39. Deguchi T., Kitaoka Y., Kakezawa M., Nishida T. Purification and characterization of a nylon-degrading enzyme // Appl. Environ. Microbiol. 1998. V. 64. № 4. P. 1366-1371.

40. Long M., Betrán E., Thornton K., Wang W. Origin of new genes: glimpses from young and old // Nature Rev. Genetics. 2003. V. 4. P. 865-875 (есть сетевая версия).

41. Creationism vs Evolution. YouDebate.com Forum. 2004 // http://www.youdebate.com/cgi-bin/scarecrow/post.cgi?forum=3&topic=2161&type=reply.

42. Дзеверин И.И., Пучков П.В., Довгаль И.В. Эмпирические основы теории макроэволюции // http://evolution.atheism.ru/polemics/base.html.

43. Tan H.M. Bacterial catabolic transposons // Appl. Microbiol. Biotechnol. 1999. V. 51. № 1. P. 1-12.

44. Betrán E., Long M. Expansion of genome coding regions by acquisition of new genes // Genetica. 2002.V. 115. P. 65-80.

45. Long M., Deutsch M., Wang W. et al. Origin of new genes: evidence from experimental and computational analyses // Genetica. 2003. V. 118. P. 171-182.

46. Nurminsky D.I., Nurminskaya M.V., De Aguiar D., Hartl DL. Selective sweep of a newly evolved sperm-specific gene in Drosophila // Nature. 1998. V. 396. № 6711. P. 572-575.

47. Ranz J.M., Ponce A.R., Hartl D.L., Nurminsky D. Origin and evolution of a new gene expressed in the Drosophila sperm axoneme // Genetica. 2003. V. 118. № 1-2. P. 233-244.

48. Chen L., DeVries, A.L., Cheng C.H. Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod // Proc. Natl Acad. Sci. USA. 1997. V. 94. № 8. P. 3817-3822.

49. Chen L., DeVries, A.L., Cheng C.H. Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish // Proc. Natl Acad. Sci. USA. 1997. V. 94. № 8. P. 3811-3816.

50. Cheng C.H., Chen L. Evolution of an antifreeze glycoprotein // Nature. 1999. V. 401. № 6752. P. 443-444.

51. Cheng C.H., Chen L., Near T.J., Jin Y. Functional antifreeze glycoprotein genes in temperate-water New Zealand nototheniid fish infer an Antarctic evolutionary origin // Mol. Biol. Evol. 2003. V. 20. № 11. P. 1897-1908.

52. Martignetti J.A., Brosius J. Neural BC1 RNA as an evolutionary marker: guinea pig remains a rodent // Proc. Natl. Acad.Sci. U.S.A. 1993. V. 90. № 20. P. 9698-9702.

53. Martignetti J.A., Brosius J. BC200 RNA: a neural RNA polymerase III product encoded by a monomeric Alu element // Proc. Natl. Acad.Sci. U.S.A. 1993. V. 90. № 24. P. 11563-11567.

54. Kim J., Martignetti J.A., Shen M.R. et al. Rodent BC1 RNA gene as a master gene for ID element amplification // Proc. Natl. Acad. Sci. U.S.A. 1994. V. 91. № 9. P. 3607-3611.

55. Хитринская И.Ю., Степанов В.А., Пузырев В.П. Alu -повторы в геноме человека // Мол. биол. 2003. Т. 37. № 3. С. 382-391.

56. Smith D.W. Muir Biology Building. Molecular Biology. Lection 27: Genome Evolution // http://www-biology.ucsd.edu/classes/bimm100.FA00/27.GenomeEvolution.html#C.

57. S


Поделиться с друзьями:

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.014 с.