Классификация минералообразующих процессов — КиберПедия 

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Классификация минералообразующих процессов

2017-07-25 2078
Классификация минералообразующих процессов 4.75 из 5.00 4 оценки
Заказать работу

Минералообразующие процессы

К числу наиболее важных факторов минералообразования относятся температура (Т) и давление (Р). Очень важны также окислительно-восстановительные условия среды (Eh), зависящие от содержания свободного кислорода, химические потенциалы (что примерно соответствует концентрации), углекислоты, серы, фтора и некоторых других элементов, влияющих на кис­лотность-щелочность (рН) среды минералообразования. И, конечно, громадную роль в минералообразовании играет вода – растворитель и переносчик компонентов, сама компонент многих минералов, среда и регулятор многих механизмов минералообразования. Таким образом, причинами минералообразования могут быть: изменение Т и Р, переохлаждение расплава, пересыщение раствора, а также электрохимические явления, жизнедеятельность организмов, радиоактивное (в основном a) излучение.

Среды образования минералов

К физико-химическим средам образования минералов относятся: магма, водный раствор, газ, коллоидные растворы, твердые (кристаллические или аморфные) среды, гетерогенные системы (например, «газ – жидкость»).

Магма – это силикатный расплав, который не тождествен по составу породе, которая из него кристаллизуется. В магме существуют подобно водным растворам простые и комплексные катионы, анионы, а также анионные сиботаксические группы, например, (Si2O7)6-, n(SiO3)2n-,
(Si6O18)12-, n(Si4O11)6n-, (MgO6)10-, (CaO6)10-, (AlO4)5-, (SiO4)4- (Белов, 1976). Эти группы представляют собой основу для дальнейшего построения структур силикатов. Помимо этого, присутствуют Na, K, а также летучие компоненты – H, F, Cl, S, C, N, форма нахождения которых до конца не выяснена. Особую роль в магматических расплавах играет вода, снижающая температуры протекания многих процессов и ускоряющая обмен компонентов.

Гидротермальные растворы образуются как за счет поверхностных вод, называемых метеорными, так и за счет глубинных (ювенильных), отделяющихся от магматических расплавов (магматогенных) или при дегидратации в ходе прогрессивного метаморфизма (метаморфогенных). Предполагается также, что вода попадает в земную кору в ходе дегидратации мантии. Очевидно, что вещества, растворенные в воде, могут попадать туда разными путями. Часть веществ выносится непосредственно из источника выделения водного раствора, часть попадает в него при прохождении через контрастные толщи и растворении компонентов вмещающих пород. Основной формой переноса веществ водными растворами являются комплексные ионы, например: (CuCl2)-, (Cu(HS)2)-, (NaHMoO4)0, (KHMoO4)0, HMoO4)-, (Au(HS)2)-, (AuCl2)-, (AgCl2)-, (Ag(HS)2)- и т. д.

Газ достаточно редок как среда минералообразования. Прежде всего, это вулканические газы, отделившиеся от расплава, из которых могут кристаллизоваться, например, гематит Fe2O3 или нашатырь NH4Cl. Из газа также отлагаются кристаллы льда, например, у входов в пещеры и на крышках погребов в зимнее время.

Флюидом принято называть надкритическую фазу, в которую переходит жидкость при повышении температуры. Как правило, основными компонентами флюидных систем являются Н2О и СО2, однако в особых случаях значительную роль могут играть F, Cl, N, S, CH4. Наличие дополнительных компонентов может существенно изменять фазовую диаграмму Н2О, однако в общем случае флюиды существуют при температурах выше 375–400 оС, при этом рост давления лишь незначительно смещает положение критической точки.

Коллоидные растворы – среда образования минералов в придонных условиях водных бассейнов во время син- и диагенеза. Так образуются многие глинистые минералы, гидроксиды, для которых часто характерно оолитовое строение. Коллоиды также принимают участие в гидротермальных процессах, особенно низкотемпературных.

Твердые среды минералообразования можно разделить на аморфные и кристаллические. Примером первых служит раскристаллизация вулканического стекла. Вторые – это полиморфные превращения веществ (графит-алмаз, образование параморфоз), распад твердых растворов (плагиоклазы, пироксены), метамиктные превращения радиоактивных минералов под воздействием собственного излучения.

Гетерогенные системы – смесь различных сред (жидкость–газ, силикатный расплав–газ) – особые условия минералообразования, среди которых следует, например, отметить области вулканизма (дегазация растворов и расплавов при падении давления), а также случаи дегазации минеральных источников. Еще один пример гетерогенной системы – пневматолитово-гидротермальное минералообразование, когда флюид при охлаждении распадается на две фазы – газ и жидкость.

Эндогенные процессы

1.1. Магматогенные процессы

1.1.1. Магматическая кристаллизация – интрузивная, эффузивная

1.1.2. Вулканические возгоны (эксгаляции)

1.1.3. Пегматитовый процесс

1.1.4. Пневматолито-гидротермальные и метасоматические процессы

1.1.4.1. Альбитизация (образование апогранитов)

1.1.4.2. Грейзенизация

1.1.4.3. Контактово-метасоматические

1.1.4.3.1. Фенитизация

1.1.4.3.2. Скарнообразование

1.1.4.4. Собственно гидротермальные процессы

1.2. Метаморфические процессы

1.2.1. Региональный метаморфизм

1.2.2. Контактовый метаморфизм (ороговикование)

Экзогенные процессы

2.1. Процессы выветривания и окисления

2.1.1. Коры выветривания

2.1.2. Зоны окисления

2.2. Осадкообразование

2.2.1. Механические осадки

2.2.2. Инфильтраты

2.2.3. Химические осадки

2.3. Криогенные процессы

2.4. Сублимационные процессы

2.5. Биогенные процессы

Теперь подробнее остановимся на характеристике каждого минералообразующего процесса и тех парагенезисах, которые при этом возникают.

 


Эндогенные процессы

Магматогенные процессы

Пегматитовый процесс

Рассмотрим случай, когда легколетучие компоненты, накапливающиеся при кристаллизации магмы, не имеют возможности уйти из расплава, как это происходит при образовании вулканических возгонов. Тогда летучие компоненты постепенно отжимаются в еще незакристаллизовавшуюся часть расплава и насыщают его. Обычно это происходит в конце магматической кристаллизации. Такой богатый, а иногда и пересыщенный летучими компонента­ми расплав называют остаточным.

В нем помимо ле­тучих компонен­тов будут также на­капливаться эле­­мен­ты, которые не вош­ли в состав по­­ро­до­об­ра­зу­ю­щих мине­ра­лов (вследствие раз­личия ион­­ных радиусов или по причине рез­ко отличных хи­­­ми­­чес­ких свойств).


Это такие элементы, как Li, Cs, Be, Ta, Nb, Sn, W, U, Th. Значит, остаточный расплав будет существенно отличаться концентрацией этих элементов от исходной магмы. Все это приводит к тому, что и кристаллизация такого расплава протекает существенно иначе. Рассмотрим главные особенности пегматитового минералообразования.

1. Обогащение остаточного расплава летучими компонентами делает его менее вязким, легкоподвижным и снижает температуру кристаллизации. Состав расплава становится эвтектическим (котектическим). Эвтектика - это легкоплавкий расплав, из которого идет одновременная совместная кристаллизация двух минералов. В случае гранитного остаточного расплава такой парой являются полевой шпат и кварц, в то время как при обычной кристаллизации гранитов полевые шпаты образуются существенно раньше кварца. Одновременная эвтектическая кристаллизация полевого шпата и кварца приводит к появлению закономерных, так называемых «графических» (письменных) срастаний этих минералов, которые первоначально и получили название пегматит (рис. 14).

2. По мере снижения температуры эвтектическая кристаллизация графических агрегатов сменяется образованием очень крупных индивидов полевого шпата и кварца. Именно вследствие разжижения расплава летучими ионы, строящие решетку этих минералов, могут легко передвигаться, и это обеспечивает хорошее питание растущих кристаллов. Такие агрегаты, состоящие из крупных индивидов кварца и полевого шпата, называют пегматоидными.

3. При дальнейшем остывании остаточного расплава пегматоидная кристаллизация сменяется образованием блоковых агрегатов. Это значит, что отдельные кристаллы полевого шпата и кварца из пегматоидных срастаний начинают разрастаться, вытесняя кристаллы другого минерала, и образуют гигантские индивиды - блоки, иногда по несколько тонн весом. Чаще такое преимущество получает полевой шпат, иногда образуется чисто полевошпатовая зона.

4. После исчерпания материала для кристаллизации блокового полевого шпата остающийся в избытке кварц завершает кристаллизацию, образуя так называемое кварцевое ядро. Важную роль в его формировании играют и постмагматические процессы. Если остаточный расплав кристаллизуется в замкнутой полости внутри массива гранитов, то в соответствии с описанным механизмом кристаллизации в пегматитовом теле возникает зональность, показанная на рис. 14.

Если же остаточный расплав по тектоническому нарушению переместится во вмещающие гранитный массив породы, то может возникнуть жильное тело пегматита с такой же зональностью, однако здесь часто
хрошо развита еще одна самая внешняя зона - аплитовая. Она сложена мелкозернистым кварц-полевошпатовым агрегатом, который кристаллизуется вдоль стенок трещины, видимо потому, что по сравнению с остаточным расплавом стенки трещин значительно более холодные, и это сразу вызывает кристаллизацию множества зародышей. В жильных телах пегматитов наиболее поздний кварц, слагающий осевую часть жилы, именуют не кварцевым ядром, а кварцевой осью жилы.

5. К зоне кварцевого ядра или кварцевой оси бывают приурочены полости, стенки которых усажены хорошо образованными кристаллами дымчатого кварца, топаза, берилла, турмалина, - так называемые занорыши.

А как проявляются в минералообразовании летучие, не входящие в состав полевого шпата и кварца, но обеспечивающие протекание пегматитового процесса? Они удерживаются в остаточном расплаве наиболее долго, хотя и начинают принимать участие в минералообразовании во время формирования блоковой зоны, а иногда и раньше. Они входят в состав слюды (мусковита), топаза, турмалина, флюорита, апатита.

Согласно первоначальной схеме образования пегматитов, предложенной А. Е. Ферсманом, в какой-то момент летучие настолько обогатят остаточный расплав, что он постепенно превратится в надкритическую флюидно-газообразную среду, богатую силикатами (Ферсман ошибочно связывал с ней формирование пегматоидных агрегатов), а затем - в высокотемпературный гидротермальный раствор. По экспериментальным данным такого постепенного перехода расплава в растворы нет и обособление постмагматических растворов происходит путем вскипания кристаллизующегося пегматитового расплава. С обособлением крупных флюидных пузырей связано формирование занорышей магматического этапа и минерализации в них. Кроме того, постмагматические растворы начинают взаимодействовать с минералами, образовавшимися на предшествующих этапах, выщелачивать и изменять их, вызывая метасоматические замещения одних минералов другими. Такие изменения и замещения ранних минералов более поздними могут происходить в несколько стадий и сопровождаются переотложением вещества в пределах пегматитового тела и усложнением его состава.

Именно с этим этапом поздних метасоматических преобразований в пегматите бывает связано образование таких промышленно важных минералов, как слюда, берилл, сподумен (Li), танталит-колумбит (Ta, Nb), касситерит (Sn). Представление об образовании пегматитов из остаточного расплава развивалось трудами ряда российских ученых, уточнявших значение отдельных этапов для формирования промышленных пегматитов разных типов (редкометальных, редкоземельных, слюдяных, керамических пегматитов). Изучение некоторых пегматитовых тел и целых полей
пегматитов привело к представлению, что не всегда их образование связано с кристаллизацией остаточного расплава. А. Н. Заварицкий, например, считал, что образование таких крупнокристаллических пород может происходить за счет перекристаллизации и укрупнения минералов породы, сходной по минеральному составу. Особенно много взаимоисключающих гипотез предложено для объяснения генезиса и особенностей строения редкометальных и мусковитовых пегматитов. Это означает, что в каждом конкретном случае необходимо изучение объекта на месте и лабораторными методами для установления способа его образования, генезиса.

Остановимся еще на некоторых явлениях, сопровождающих пегматитовое минералообразование. Основположник изучения пегматитов А.Е. Ферсман выделял пегматиты чистой линии, когда остаточный пегматитовый расплав кристаллизуется в породах, близких по химическому составу. Очевидно, что в этом случае никакого влияния вмещающих пород не будет, и минеральный состав таких пегматитов целиком определяется составом остаточного расплава.

Если же расплав попадает в породы, резко отличные по химизму, то происходит его взаимодействие с этими породами, которое меняет состав расплава. Такие пегматиты Ферсман называл пегматитами линии скрещения. Частным случаем пегматитов линии скрещения являются десилицированные пегматиты, – когда при внедрении гранитного пегматитового расплава в ультраосновные породы, с одной стороны, происходит десиликация расплава (вплоть до исчезновения кварца из продуктов кристаллизации), а с другой - расплав обогащается компонентами ультраосновных пород (в первую очередь - магнием и хромом). Это приводит к появлению флогопита (магнезиальной слюды), не характерного для обычных гранитных пегматитов, и к появлению, хромсодержащего изумруда вместо обычного берилла. Примером десилицированных пегматитов является месторождение «Изумрудные копи» на Урале, где известна именно такая ассоциация - с полевым шпатом, но без кварца, с изумрудом, хризобериллом в слюдяных флогопитовых оторочках, так называемых слюдитах.

При внедрении пегматитового расплава в породы, богатые глиноземом, происходит обогащение его Al2O3 и появление в парагенезисе андалузита, силлиманита, кианита, альмандина, а при избытке глинозема, когда кремнезем уже весь связан, возможно появление корунда. Особенно эти изменения бывают заметны в приконтактовых частях жил.


Кристаллизация гранитного пегматитового расплава в карбонатных толщах приводит к выносу К и кремнезема и привносу Са (образование пла­гиоклазитов).

Кристаллизация пегматитового расплава в трещинах, секущих толщу магнезиальных известняков (Кухи-Лал, Памир), сопровождалось частичным выносом кремнезема и привносом Mg, что привело к появлению в пегматите оторочки флогопита, кордиерита (Mg), дравита (Mg-турмалина) и силлиманита.

Заканчивая рассмотрение пегматитового минералообразования, отметим, что накопление летучих в остаточном расплаве свойственно не только кислым магмам. Значит, пегматиты как продукт кристаллизации остаточного расплава могут образоваться при кристаллизации любых пород. Действительно, известны габбро-пегматиты, дунит-пегматиты, сиенит-пегматиты и пегматиты нефелиновых сиенитов. Однако, за исключением последних двух, встречаются они гораздо реже гранитных.

Кроме того, гранитные пегматиты могут быть связаны не только с кристаллизацией остаточных расплавов, возникающих при дифференциации гранитных магм (камерные, редкометальные), но и с процессами анатектического выплавления расплавов при региональном метаморфизме высокой ступени (мусковитовые, редкоземельные, керамические). Магматический этап формирования остаточных гранитных пегматитов находится в пределах 700–500 оС, анатектических - 850–650 оС. При более низких температурах идут процессы постмагматической переработки ранних агрегатов.

Образование пегматитов происходит на относительно небольших глубинах: камерных (хрусталеносных и флюоритоносных) - на глубине 1,5–3,5 км, редкометальных - 3,5–7 км, мусковитовых - 7–11 км, редкоземельных и керамических - более 11 км.

Пегматитовый тип минералообразования чрезвычайно важен в практическом отношении. С гранитными пегматитами связаны промышленные месторождения Li, Be, Nb, Ta, Sn, а также U, Th, Cs, Rb, редких земель (TR), слюд и керамического сырья. Пегматиты нефелиновых сиенитов и сиенит-пегматиты являются концентраторами Zr, Hf, U, Th, Nb, Ta, TR, Ti. Из пегматитовых занорышей добывают драгоценные камни - бериллы различной окраски, цветные (полихромные) турмалины, топазы, хризоберилл, полудрагоценные дымчатые кварцы. Пегматиты служат также источником пьезокварца, оптического флюорита и турмалина, используемого в лазерной технике.

Грейзенизация

Грейзены - это метасоматические постмагматические породы, которые образуются при воздействии пневматолитово-гидротермальных растворов, отделившихся при кристаллизации гранитной магмы, на алюмосиликатные породы, в первую очередь - сами гранитоиды.

Определение очень похожее на определение апогранитов. И там метасоматоз, и здесь объектом изменения являются ранее кристаллизовавшиеся граниты. В чем разница этих процессов?

Во-первых, подчеркивается пневматолитово-гидротермальный характер изменения: пнеума означает газ, то есть часть реакций может идти под воздействием газообразных летучих компонентов - таких, как НF, НCl, B2О3. Это очень сильные реагенты, создающие сильнокислую среду, которая способствует глубокой переработке пород с явлениями растворения и выноса (выщелачивания) даже таких стойких минералов, как кварц (SiO2 + 4HF ® SiF4­ + 2H2O). Во-вторых, грейзенизация происходит при высокой активности калия, и потому при тех же исходных гранитоидах возникает иная ассоциация минералов: кварц легко растворяется и переотлагается, хотя общее его количество возрастает, что видно из реакции замещения калишпата мусковитом и топазом:

калишпат мусковит топаз кварц

5K[AlSi3O8] + 3HF ® KAl2[AlSi3O10](OH,F)2 + Al2F2[SiO4] + 11SiO2 +

2K2O + H2O.

При грейзенизации самым чувствительным минералом гранита является биотит - он в первую очередь замещается мусковитом; следом за ним мусковитом же замещаются полевые шпаты (калишпат, реакция приведена выше, и кислый плагиоклаз, кальций которого тут же связывается фтором с образованием флюорита). Таким образом, в результате грейзенизации гранит превращается в кварц-мусковитовый агрегат - породу серого цвета (грей - серый), содержащую минералы, богатые летучими: фтором - топаз, флюорит, мусковит; бором - турмалин. Вместе с летучими при грейзенизации приносятся такие элементы, как Sn, W, Be, Mo, Bi, Ta, Nb. Поэтому в грейзенах наряду с отмеченными минералами образуются касситерит SnO2, танталит–колумбит (Fe,Mn)(Nb,Ta)2O6, берилл Al2{Be3[Si6O18]}, вольфрамит (Fe,Mn)WO4, молибденит MoS2, висмутин Bi2S3, арсенопирит FeAsS.

Так же, как и апограниты, грейзены образуются преимущественно в апикальных частях гранитных массивов и нередко - во вмещающих граниты породах, если это породы алюмосиликатные (сланцы, гнейсы). При грейзенизации нередко возникают штокверки - неправильная сеть, сплетение кварцевых жил, окруженных грейзенизированной породой. Эти жилы представляют собой бывшие трещины, по которым происходило движение пневматолитово-гидротермальных растворов, а затем они заполнялись кварцем, мусковитом, частично даже калишпатом, переотложенным из окружающих участков пород, подвергшихся грейзенизации. Поэтому такие жилы содержат те же характерные минералы грейзенов - топаз, берилл, флюорит, турмалин и все остальные, упомянутые выше рудные минералы. Они являются свидетельством того, что высокотемпературный (600–375 оС) процесс грейзенизации во времени без перерыва сменяется высокотемпературным (375–250 оС) гидротермальным процессом.

Остановимся на временном соотношении грейзенов и апогранитов. Для этого надо принять во внимание зависимость активности K и Na от кислот ности-щелочности среды и тем­пературы (рис. 15). Из этого графика видно, что К и Na попеременно активны, как это уже было отмечено для апогранитов. Но минералы при этом возникают различные. Образование боль­шо­го количества мусковита про­исходит после альбитизации в более кислой среде.

Действительно, нередко грей­­зены накладываются на апограниты, и общую последовательность уже рассмотренных магматогенных процессов можно выразить так: кристаллизация гранитов ® пегматиты ® апограниты ® грейзены ® гидротермальный процесс. Эта последовательность отвечает общему снижению температуры.

Однако, прежде чем перейти к следующему по температуре гидротермальному процессу, остановимся на явлениях, сопровождающих кристаллизацию магмы, которые происходят во вмещающих массив породах и в его приконтактовой части.

Фенитизация

Название происходит от местности Фен в Скандинавии, где этот процесс был впервые изучен. При внедрении щелочной магмы в силикатные и алюмосиликатные породы (гнейсы, граниты, песчаники, габброиды, амфиболиты) происходит вынос из кристаллизующегося расплава большого количества щелочей - K2O и Na2O, которые активно воздействуют на вмещающие породы, изменяя их. Это изменение идет тем интенсивнее, чем сильнее отличаются вмещающие породы от внедрившейся магмы по составу. И особенно, если сами вмещающие породы неоднородны и контрастируют между собой по химизму (тогда и между ними тоже начинают идти реакции).

В результате такого воздействия магмы на вмещающие породы вокруг массива щелочных пород возникает ореол контактово-метасоматических пород, которые и получили название фениты. Этот ореол обычно имеет зональное строение, так как температура и степень метасоматического замещения по мере удаления от контакта во вмещающие породы меняются (рис. 16).

Так, вблизи контакта со щелочным интрузивом, где прогрев наиболее сильный, а количество поступающих щелочей максимально, первона­чальные минералы вмещающих пород полнос­тью замещаются новообразованными, среди которых будут щелочные минералы, характерные для самой магматической щелочной породы: недосыщенный кремнеземом нефелин, щелочной пироксен - эгирин, калишпат (ортоклаз). Чуть дальше от контакта образуются эгирин-авгит или диопсид, альбит и тонкоигольчатый эгирин.

На большем удалении от контакта, во второй зоне, уменьшается количество новообразованных минералов (в первую очередь - нефелина) и сохраняются реликты первичных минералов вмещающих пород.


Еще дальше от контакта самые щелочные из новых минералов уже не образуются, количество незамещенных первичных минералов возрастет, а затем по мере удаления от контакта вынос щелочей будет фиксироваться только по вновь образованному альбиту. В конце концов, можно проследить весь переход вплоть до исходных вмещающих пород, на которых воздействие щелочного массива уже никак не отразилось.

Температура фенитизации вблизи контакта достигает 1200–1000 оС, то есть такая же высокая, как температура кристаллизации щелочной магмы.

Чем фениты обратили на себя внимание? Тем, что нередко вместе со щелочами во вмещающие породы выносятся Nb, Ta, TR, Zr, Hf - те элементы, которыми щелочные магмы богаты; и в фенитах они нередко дают скопления таких минералов, как пирохлор (Nb, Ta, TR, U, Th), циркон (Zr + Hf), бастнезит (TR), и в этом случае фениты становятся ценной рудой. Типичными примерами фенитов являются контактово-метасоматические ореолы вокруг щелочных массивов Хибин, Вишневых Гор (Урал), Сибири.

1.1.4.3.2. Скарнообразование

Скарны - это породы, которые образуются метасоматическим путем на контакте карбонатных вмещающих пород с магматическими, чаще всего кислыми, гранитоидными породами.

Следует отметить, что скарны и скарноподобные породы могут возникать и при внедрении ультраосновных, основных, щелочных магм, и даже на контакте карбонатных и немагматических силикатных толщ, но все-таки наиболее типичны случаи внедрения в карбонатные породы гранитоидных магм, поскольку именно тогда проявляется контрастность контактирующих сред по химизму, а значит, наиболее активно идет обмен компонентами. Такой обмен вызывает изменение минерального состава пород и в приконтактовой части гранитного массива (эндоскарны), и особенно - в приконтактовой части со стороны вмещающих пород (экзоскарны) (рис. 17). Поскольку он происходит путем замещения обеих пород, то к нему приложим термин биметасоматоз (предложен Д. С. Коржинским). Считают, что скарны образуются на глубине 3–7 км и образованию их способствует возникновение трещин контракции (усадки объема при остывании магматических пород).

В зависимости от состава вмещающих карбонатных толщ образуются скарны двух типов - магнезиальные и известковые.

1. Магнезиальные скарны образуются на контакте с магнезиальными карбонатными толщами - доломитами, доломитовыми мраморами - CaMg(CO3)2. Поэтому для них характерна ассоциация минералов, богатых магнием, или двойных солей Са и Mg:

форстерит Fo Mg2[SiO4],

флогопит Phl KMg3[AlSi3O10](OH,F)2,

шпинель Sp MgAl2O4,

диопсид Di CaMg[Si2O6],

энстатит En Mg2[Si2O6],

минералы группы хондродита-гумита -

Mg2[SiO4]×Mg(F,OH)2-4Mg2[SiO4]×Mg(F,OH)2,

тремолит Trem Ca2Mg5[Si4O11]2(OH)2,

иногда -

магнезиальный турмалин NaMg3Al6[Si6O18](BO3)3(OH,F)3+1.

2. Известковые (известковистые) скарны образуются на контакте с мраморизованными известняками и мраморами, поэтому здесь преобладают кальциевые силикаты:

волластонит Voll Ca3[Si3O9],

гроссуляр-андрадит Gross-Andr Ca3Al2[SiO4]3 - Ca3Fe2[SiO4]3,

диопсид-геденбергит Di-Häd CaMg[Si2O6] - CaFe[Si2O6],

везувиан Ves Ca10(Mg,Fe)2Al4[SiO4][Si2O7]2(OH,F)4,

эпидот Ep Ca2FeAl2[SiO4][Si2O7]О(OH),

тремолит Trem Ca2Mg5[Si4O11]2(OH)2.

Температура скарнообразования различна: для магнезиальных - 850–650 оС, известковых - 800–400 оС. Непосредственно у контакта при максимальном прогреве температура может подниматься до 1000 оС.

По мере остывания зоны контакта, вследствие контракции скарнированных пород, развивается трещиноватость, и в трещины начинают поступать сначала пневматолитово-гидротермальные, а затем – гидротермальные растворы, которые отделяются при кристаллизации магматических пород. Растворы активно изменяют более ранние скарновые минералы, поэтому в образовании скарнов различают собственно скарновый этап (подразделяемый на раннескарновый и позднескарновый) и этап более поздних наложений, главным образом гидротермальных. Эти наложения приводят не только к
перекристаллизации скарновых минералов и замещению раннескарновых минералов позднескарновыми, но и к отложению в скарнах гидротермальных минералов, компоненты которых приносятся растворами из магматического очага. Среди них такие очень важные в промышленном отношении, как шеелит Ca[WO4], молибденит MoS2, минералы Be, Sn, Fe, Co, Pb + Zn, Cu, самородное Au.

По характеру рудной специализации среди скарнов выделяют железорудные скарны (магнетитовые) – г. Магнитная, Высокая, Благодать, Верблюжка (Урал), Соколово-Сарбайское м-е (Тургайский прогиб), скарны Горной Шории; меднорудные скарны (с халькопиритом, борнитом, халькозином) – Хакасия; вольфрамоносные скарны (с шеелитом) – Майхура, Чорух-Дайрон, Лянгар и др. (Средняя Азия), Тырныауз (Кавказ); скарны с полиметаллическим оруденением (сфалеритом, галенитом) – Тетюхе или Дальнегорское (Приморье); скарны с кобальтовым оруденением (кобальтином) – Дашкесан (Азербайджан); золоторудные скарны – Горная Шория и Алтай; бороносные скарны (с людвигитом (Mg,Fe)2Fe[BO3]O2) – Якутия, Горная Шория.

Гидротермальные процессы

Как видно из характеристики магматогенных процессов, все они заканчиваются проявлением гидротермальной деятельности, т. е. минералообразованием, связанным с действием нагретых вод. Тем самым уже устанавливается один из источников гидротермальных растворов - магматический расплав, который может содержать растворенную воду в значительных количествах. Как правило, наиболее богаты водой кислые магмы, тогда как основные и ультраосновные магмы являются более «сухими». Гидротермальные растворы обособляются по мере снижения температуры в ходе кристаллизации магм на последних этапах формирования магматических пород (магматогенные воды). Однако это не единственный источник гидротермальных растворов, исследования вулканических областей и изотопная геохимия показали, что существенную роль в их формировании могут играть метеорные воды - поверхностные воды, просачивающиеся на глубину, где они нагреваются за счет тепла магматических масс и могут дать начало гидротермальным растворам. Значительное количество воды высвобождается при обезвоживании осадочных и других пород при погружении их на глубину в ходе метаморфических процессов (метаморфогенные воды). Иногда воды корового происхождения называют вадозными, чтобы противопоставить их глубинным, ювенильным, однако термин «вадозные» часто используют и как синоним метеорных вод. Между ювенильными, метеорными и метаморфогенными водами может происходить
смешивание. Так как источники гидротермальных растворов различны, то и гидротермы будут иметь различный состав.

Магматогенные воды, богатые растворенными летучими компонентами магмы (HCl, HF), изначально определяют кислый, с низким рН, характер глубинных гидротерм. При прохождении таких растворов через породы за счет реакции с этими породами состав и кислотность растворов будут меняться. Из магматического очага они заимствуют элементы, не вошедшие в породообразующие минералы, - в первую очередь тяжелые, рудные элементы - W, Mo, Sn, Be, U, Cu, Zn, Pb, Au, Ag, Bi и др.

Состав гидротерм, формирующихся за счет метеорных вод, будет полностью определяться составом пород, через которые эти воды фильтруются. Однако это не означает, что метеорные воды изначально стерильны. Дождевые воды приносят на землю взвешенные в атмосфере вещества. Так, в связи с антропогенным воздействием на окружающую среду ежегодно на поверхность оседает количество ртути, соизмеримое с годовой мировой добычей.

В целом, сведения о химизме гидротермальных растворов мы черпаем, изучая продукты гидротермальной деятельности. Это изучение показало, что гидротермами хорошо переносится кремнезем (кварц, халцедон - типичные минералы гидротермальных образований) и очень плохо - глинозем, поскольку алюмосиликаты и силикаты алюминия среди гидротермальных минералов не характерны. Из катионов в продуктах гидротермальной деятельности мы видим: Cu, Pb, Zn, Hg, Au, Fe, Co, Ni, As, Sb, Bi, а также Sn, W, Mo, U, иногда Mn. Кроме того, характерны щелочные и щелочноземельные элементы (Na, K, Ca, Mg, Ba), причем о важной роли некоторых из них в гидротермальном процессе мы узнаем лишь по косвенным данным, исследуя включения минералообразующих растворов в минералах, поскольку эти элементы сами дают легкорастворимые соединения.

Уже указывалось, что по мере продвижения гидротерм меняется их кислотность. Не остаются неизменными и другие параметры. В частности, меняется окислительно-восстановительный потенциал (Eh) за счет увеличения содержания О2 по мере продвижения растворов к поверхности. Это ведет к окислению аниона S2- до SO42- и появлению кроме сульфидов еще и сульфатов, например, барита Ba[SO4], который становится в некоторых гидротермальных образованиях главным нерудным минералом.

Очень важным для гидротермального минералообразования является вопрос о формах переноса рудных элементов в растворах. Большинство из них дает слаборастворимые в истинных растворах соединения, что привело
к представлениям о переносе в виде комплексных соединений, растворимость которых значительно выше, либо об образовании рудных минералов из коллоидных растворов. Кроме того, повышение Т и Р значительно увеличивает растворимость некоторых минералов и делает возможным их перенос в виде прямых ионных растворов. В пользу того или иного способа переноса накоплен большой фактический и экспериментальный материал. Так, перенос Au может осуществляться в виде хлоридных или сложных полисульфидных комплексов. Наблюдения современного гидротермального минералообразования в вулканических областях показывают, что из коллоидных растворов могут образовываться силикатно-сульфидные руды, содержащие Cu, Fe, As, Sb, Pb, Mn.

Каковы причины отложения минералов из гидротермальных растворов? Прежде всего, следует остановиться на роли температуры и давления. Верхний предел температуры гидротермальных растворов определяется критической температурой воды и водных растворов: 375–400 оС. Очевидно, что постепенное снижение температуры, влияя на растворимость, приводит к минералообразованию. Так, даже в пределах одной гидротермальной жилы разновозрастные минералы могут иметь разную температуру образования. Нижним пределом, очевидно, являются близповерхностные процессы с участием водных растворов, часто называемых вадозными.

Давление может изменяться от одной атмосферы до полутора тысяч атмосфер и более, в пределе соответствуя литостатическому давлению. Долгое время считалось, что глубже 4,5–5 км резко снижается пористость пород и уменьшается возможность циркуляции растворов. Однако обнаружение продуктов гидротермальной деятельности на гораздо больших глубинах (Кольская сверхглубокая скважина - 13 км) заставило расширить диапазон давлений для гидротермального минералообразования. Снижение давления нередко является более важной причиной минералообразования, чем снижение температуры, поскольку может происходить гораздо быстрее. Например, присутствие при высоком давлении растворенной углекислоты приводит к образованию легкорастворимого Ca(HCO3)2, но если вследствие тектонических подвижек произойдет приоткрытие трещин и практически мгновенный сброс давления, то растворенная СО2 улетучится («вскипание» раствора), произойдет отложение кальцита:

Ca(HCO3)2 ® Ca[CO3]¯ + CO2­ + H2O.

Еще одним важным фактором является изменение кислотности растворов по мере взаимодействия с породами, через которые они движутся. Например, в зависимости от кислотности раствора будут образовываться пирит или марказит, при нейтрализации растворов бутут осаждаться карбонаты.

Мы уже отметили роль Eh в изменении состава растворов, он же может служить и причиной отложения. Следует добавить лишь, что обычно все факторы связаны между собой, и речь может идти только о преобладающем влиянии какого-либо из них.

Следующий вопрос - формы отложения. Наиболее характерные формы гидротермального минералообразования - это жилы. Гидротермальные жилы образуются двояко:

1) путем заполнения открытых трещин отлагающимися из раствора минералами. В этом случае идет последовательное нарастание минерального вещества на стенки трещины и рост от стенок внутрь. Такое отложение называется секреционным (рис. 18). При этом могут возникать полосчатые жилы, когда образование одних минерал


Поделиться с друзьями:

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.077 с.