Получение многослойных магнитных структур методом электролитического осаждения — КиберПедия 

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Получение многослойных магнитных структур методом электролитического осаждения

2017-07-01 349
Получение многослойных магнитных структур методом электролитического осаждения 0.00 из 5.00 0 оценок
Заказать работу

Метод электролитического осаждения – наиболее старый метод получения тонкопленочных структур металлов. В технологии производства изделий электронной техники этот метод для осаждения серебра, золота, меди и никеля, хрома, свинца, платины, олова, цинка и ряда других металлов [9]. Достаточно давно этот метод применяется для получения тонких пленок ферромагнитных металлов и их сплавов [10, 11]. Технологический процесс происходит в электролитической ванне, упрощенная схема которой представлена на рис. 3.8. В качестве электролита такой ванны используются водные растворы солей осаждаемого металла. Например, для осаждения пленок никеля электролит содержит растворы сульфата никеля и хлористого аммония. Катионы, которые нужно осадить, могут присутствовать в электролите в виде свободных ионов или комплексов. Анод электролитической ванны соединен с положительным полюсом источника постоянного тока, катод, являющийся подложкой осаждаемой пленки – с отрицательным полюсом.

При пропускании через электролитическую ванну электрического тока, величина которого контролируется амперметром, катионы, в числе которых и катионы осаждаемого металла, движутся к катоду (в нашем примере Ni2+ и NH4+), анионы (SO42- и Cl-) – в противоположном направлении.

 
 


Согласно законам электролиза Фарадея скорость осаждения металла на катоде определяется плотностью электрического тока j, прошедшего через электролитическую ванну:


, (3.8)

где h - выход по току; r - плотность осажденного металла; E – напряженность электрического поля; F – число Фарадея.

На рис. 3.9. схематически показана вольтамперная характеристика процесса электролиза. При абсолютном значении потенциала катода j выше некоторой величины jН процесс электролитического осаждения достигает насыщения. С другой стороны при j < jР осаждение металлической пленки на катоде прекращается и наблюдается даже растворение катода. В этом режиме электролитическую ванну можно использовать для предварительной очистки подложки. Таким образом, технологический режим электролитического осаждения ограничен значениями потенциала катода от jН доjР.


На процесс электролитического осаждения металлической пленки существенное влияние оказывают состав электролита, кислотность электролитической ванны, плотность электрического тока, температура подложки и т.д. Технологические режимы, как правило, подбираются опытным путем из условия наилучшего протекания процесса электролитического осаждения. Для улучшения этого процесса в электролит добавляют различные присадки, которые не влияют на состав осаждаемой пленки, а для улучшения самого процесса электролитического осаждения. Например, невосстанавливающие катионы калия и кальция в электролите увеличивают его электропроводность. Добавки различных неорганических соединений уменьшают зависимость процесса от кислотности электролита.

Наиболее простой способ получения многослойных структур металлов возможен при многократном переносе подложки из одного электролита в другой, в каждом из которых осаждается пленка соответствующего металла. Таким способом еще в 1921 г. были получены пленки из чередующихся слоев меди и никеля. В современных методах электролитического осаждения многослойных структур металлов используется тот факт, что у многих металлов существенно отличаются их равновесные потенциалы восстановления [3]. Так, например, немагнитные металлы Cu, Ag, Au могут осаждаться при очень малых (иногда даже положительных) потенциалах катода, магнитные элементы группы железа эффективно осаждаются при достаточно высоких отрицательных потенциалах катода. Разница между ними может составлять 600 мВ и более [3, 12]. Это обстоятельство позволяет при использовании импульсного напряжения на катоде получать многослойные структуры из одного и того же электролита.

 
 


На рис. 3.10 приведены совмещенные диаграммы Пюрбаха меди и никеля [3,12]. Из них видно, что при потенциале катода в области I на катоде будет осаждаться только медь. Если потенциал находится в области II, то будут осаждаться как медь, так и никель. В технологии электролитического осаждения многослойных структур из одного электролита используется электролит, содержащий соли обоих металлов. Предельная плотность тока осаждения каждого элемента в этом случае зависит от его концентрации в электролите. На рис. 3.11 в качестве примера приведена зависимость плотности тока осаждения меди от потенциала катода для электролитов с разным содержанием ионов меди. Из солей металлов в состав электролита входили никель сернокислый (NiSO4), никель хлористый (NiCl2) и медь сернокислая [12]. Кривая 1 соответствует простому электролиту, содержащему только ионы никеля с потенциалом насыщения, соответствующего точке В (сравнить с данными рис. 3.9). По мере увеличения в электролите ионов меди в вольтамперной зависимости процесса электролитического осаждения наблюдается вторая область насыщения (точка А), которая определяется предельной плотностью тока осаждения меди. при значительно меньших потенциалах на катоде. Отсюда следует, что при потенциале катода 100…500 мВ (точка А, рис.3.11) на нем будет осаждаться чистая медь, так как этого потенциала еще недостаточно для осаждения никеля. Если теперь резко поднять потенциал катода до величины приблизительно 1000 мВ (точка В на рис. 3.11), то выделяться будет практически только никель, так как скорость осаждения меди остается малой в сравнении со скоростью осаждения никеля.

 
 


Для получения многослойных структур необходимо на катод электролитической ванны периодически подавать импульсы напряжения разной амплитуды и длительности, в течение которых на катоде будет осаждаться соответствующий металл. В зависимости от режимов подачи импульсов различают потенциостатическое и гальваностатическое импульсное электролитическое осаждение. При гальваностатическом осаждении на катоде поддерживается постоянной в течение каждого импульса плотность тока. Так, при получении Cu-Ni многослойных структур [12] плотность тока при осаждении слоя меди составляла 1,5 мА/см2, в то время как при осаждении слоя никеля плотность тока поддерживалась равной 100 мА/см2. В потенциостатическом режиме постоянными на катоде поддерживались напряжения: -400 мВ для меди и -1000 мВ для никеля. При длительности импульсов 5,5 с и 0,2 с при осаждении Cu и Ni соответственно формировались слои этих металлов одинаковой толщины по 100 Å.

Потенциостатический режим осаждения в большинстве случаев позволяет получать более резкую границу между слоями в магнитных многослойных структурах. При оптимальном выборе режимов электролитического осаждения содержание магнитного элемента в немагнитном и наоборот может не превышать 0,5…0,1 % [3].

Литература

Херман М. Полупроводниковые сверхрешетки: Пер. с англ.- М.: Мир, 1989.- 240 с.

Уфимцев В.Б., Акчурин Р.Х. Физико-химические основы жидкофазной эпитаксии.- М.: Металлургия, 1983.- с.

Федосюк В.М., Шелег М.У., Касютич О.И. Многослойные магнитные структуры // Зарубежная радиоэлектроника.- 1990.- № 5.- С. 88 – 97.

Фельдман Л., Майер Д. Основы анализа поверхности и тонких пленок. - М: Мир, 1989. - 344 с.

Luth H. Surface and Interfaces of Solids. Springer Series in Surface Science 15. – Springer-Verlag, Berlin, Heidelberg, 1993. – 356 p.

Manasevit H.M. …..// Appl. Phys. Lett. – 1968.- Vol.12, No..- P. 156 -.

Griffits R. J. M., Chew N. G., Cullis A.G., Joyce G.C. // Electronics Lett.- 1983.- Vol. 19, No..- P.988 –

Leys M.R., van der Opdorn C., Viegeles M.P.A. Talen-van der Mhen H.J.

// J. Cryst. Growth.- 1984.- Vol. 68, No..- P. 431 -.

Вакуумное оборудование тонкопленочной технологии производства изделий электронной техники: Учебник для студентов специальности «Электронное машиностроение»./ Н.В. Василенко, Е.Н. Ивашов, Л.К. Ковалев и др.; Под ред. Проф. Л.К. Ковалева, Н.В. Василенко.: В 2 т. Т.1.- Красноярск: кн. изд-во Сиб. аэрокосм. акад., 1995. – 256 с.

Суху Р. Магнитные тонкие пленки.- М.: Мир, 1967.- 422 с.

Праттон М. Тонкие ферромагнитные пленки.- Л.: Судостроение, 1967.- 266 с.

Bennet L. H., Lashmore D.S., Dariel M.P. et al. Magnetic properties of electrodepositied copper-nikel composition-modulated alloys // Journ. Magn. And Magn. Materials.- 1987.- Vol. 67, No. 1.- P. 239 – 245.

 


Поделиться с друзьями:

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.01 с.