Потенциал заданного распределения заряда — КиберПедия 

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Потенциал заданного распределения заряда

2017-06-29 454
Потенциал заданного распределения заряда 0.00 из 5.00 0 оценок
Заказать работу

 

Напряженность поля уединенного положительного точечного заряда q в точке A на расстоянии r от заряда (рис.2.1) равна

.

Здесь ― единичный вектор, направленный вдоль прямой, соединяющей эту точку и заряд.

 

Рис.2.1. Поле точечного заряда

Пусть потенциал равен нулю на бесконечности. Тогда потенциал произвольной точки поля точечного заряда

.

В случае объемного распределения заряда (в конечной области) с учетом имеем:

.

Аналогично иммеем:

для поверхностного распределения заряда ,

для линейного распределения заряда .

 

Уравнение Пуассона и Лапласа

 

Ранее было получено . Тогда:

, откуда получаем уравнением Пуассона:

или .

- опера́тор Лапла́са (лапласиа́н, оператор дельта).

В декартовой системе координат может быть представлено в форме

.

Решение уравнения Пуассона в общем виде можно найти следующим образом. Положим, что в объеме V есть заряды плотностью r. Эти заряды представим в виде совокупности точечных зарядов r dV, где dV ― элемент объема. Составляющая потенциала d j электрического поля от элементарного заряда r dV равен .

Значение j определяется как сумма (интеграл) потенциалов от всех зарядов поля:

.

Предполагается, что потенциал на бесконечности равен нулю и заряды, создающие поля распределены в ограниченной области (иначе интеграл может оказаться расходящимся).

В реальных условиях свободные заряды располагаются на поверхности проводников бесконечно тонким слоем. В диэлектриках, которыми разделены заряженные проводники, объемные заряды от­сутствуют . В этом случае в диэлектрике имеем уравнение Лапласа:

или .

Для однозначного решения дифференциальных уравнений поля необходимы граничные условия.

 

Граничные условия для векторов электрического поля

 

Пусть наповерхности раздела двух диэлектриков с различными диэлектрическими проницаемостями ε1 и ε2 распределен поверхностный заряд плотностью σ.

Окружим точку на поверхности раздела сред элементарнымцилиндром (высота цилиндра много меньше радиуса) таким образом, чтобы его основания находились в разных средах и были перпендикулярны к нормали, проведенной в рассматриваемой точке (рис.2.2). Этот цилиндр охватывает малую площадку на поверхности раздела сред с зарядом σ .

Векторы электрического смещения в первой и второй средах обозначим соответственно и .

Применим к поверхности цилиндра теорему Гаусса

,

где S ― поверхность элементарного цилиндра.

 

Рис.2.2. Векторы элекрического смещения на границе сред

Устремим объём цилиндра к нулю при условие, что высота цилиндра много меньше его радиуса. В этом случае можно пренебречь потоком вектора сквозь боковую поверхность. Учитывая малые размеры площадок оснований, можно считать что вектор в пределах своей площадки имеет одно и то же значение. С учетом этого после интегрирования для проекций вектора на номаль получим

(*)

или

.

Учитывая, что , после сокращения получаем граничное условие нормальной составляющей вектора электрического смещения

Dn 2Dn 1= σ. (**)

Нормальная проекция вектора электрического смещения на границе раздела двух сред претерпевает скачок, равный поверхностной плотности свободных зарядов, распределенных на этой границе.

При отсутствии на поверхности раздела сред поверхностного заряда имеем .

На границе раздела двух диэлектриков в случае отсутствия на границе раздела двух сред свободного заряда равны нормальные составляющие вектора электрического смещения.

Выделим на границе раздела сред малый контуртаким образом, чтобы его стороны ab и cd находились в разных средах и были перпендикулярны к нормали, проведенной в рассматриваемой точке (рис.2.3). Размеры сторон устремим к нулю контура удовлетворяют условию .

 

 

Рис.2.3. Векторы напряженности электрического поля на границе сред

 

Применим к контуру второе уравнение Максвелла в интегральной форме:

,

где ― площадь поверхности, ограниченной контуром abcd; ― вектор элементарной площадки, направленный перпедикулярно к площадке .

При интегрировании пренебрегаем вкладом в интеграл на боковых сторонах da и bc ввиду их малости. Тогда:

.

Так как конечная величина, а стремится кнулю, то

Отсюда

(***)

или

.

На границе раздела двух диэлектриков равны тангенциальные составляющие вектора напряженности электрического поля.

При отсутствии на поверхности раздела сред поверхностного заряда из

Выражений (*) и (***)получаем соотношение, определяющее преломление векторов и на границе раздела сред

.

Для потенциала на границе имеем или . Интегриуя последнее равенство, получим:

,

где ― произвольная постоянная.

Постоянную в большинстве случаев можно считать равной нулю. Действительно, потенциал и, созданный объемными или поверхностными зарядами, является непрерывной функцией. При этом имеем:

.

На поверхности раздела двух диэлектриков с разными электрическими свойствами потенциал непрерывен.

Электростатическое поле внутри проводника (рис. 2.4) отсутствует ().

Рис. 2.4. Проводник вэлектрическом поле

Поверхность проводника является поверхностью равного потенциала.

Отсюда касательная (тангенциальная) составляющая вектора E в диэлектрике около поверхности проводника . Тогда линии напряженности и смещения поля в диэлектрике нормальны к проводящей поверхности (рис. 2.5).

Рис.2.5. Граничное условие на поверхности проводника

На поверхности проводника бесконечно тонким слоем будут распо­лагаться свободные разряды с поверхностной плотно­стью . Плотность свободных зарядов на поверхности проводящего тела равна нормальной составляющей вектора электрической индукции:

.

 


Поделиться с друзьями:

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.022 с.