Калорическое уравнение состояния — КиберПедия 

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Калорическое уравнение состояния

2017-06-20 346
Калорическое уравнение состояния 0.00 из 5.00 0 оценок
Заказать работу

Если в термическое уравнение состояния в качестве обязательной переменной (зависимой или независимой) входит температура, то калорическое уравнение состояния (КУС) для простой закрытой системы отражает зависимость внутренней энергии от термодинамических параметров состояния (температуры и объёма, температуры и давления, объёма и давления) (авторство термина КУС принадлежит Х. Камерлинг-Оннесу):

 

(Калорическое уравнение состояния с независимыми переменными T и V)

(Калорическое уравнение состояния с независимыми переменными T и P)

(Калорическое уравнение состояния с независимыми переменными V и P)

 

 

Изопроцессы — термодинамические процессы, во время которых количество вещества и ещё одна из физических величин — параметров состояния: давление, объём, температура или энтропия — остаются неизменными. Так, неизменному давлению соответствует изобарный процесс, объёму — изохорный, температуре — изотермический, энтропии — изоэнтропийный (например, обратимый адиабатический процесс). Линии, изображающие данные процессы на какой-либо термодинамической диаграмме, называются изобара, изохора, изотерма и адиабата соответственно. Изопроцессы являются частными случаями политропного процесса.

 

Изобарный процесс

Изобарный (или изобармческий) процесс (от др.-греч. ἴσος «равный» и βάρος «тяжесть, вес») — процесс изменения состояния термодинамической системы при постоянном давлении (P=const).

Зависимость объёма газа от температуры при неизменном давлении была экспериментально исследована в 1802 году Жозефом Луи Гей-Люссаком. Закон Гей-Люссака: При постоянном давлении и неизменных значениях массы идеального газа и его молярной массы, отношение объёма газа к его абсолютной температуре остаётся постоянным: V/T = const.

Линия, изображающая изобарный процесс на диаграмме, называется изобарой.

 

Изохорный процесс

Изохорный (или изохорический) процесс (от др.-греч. ἴσος «равный» и χώρος «[занимаемое] место») — процесс изменения состояния термодинамической системы при постоянном объёме (V=const). Для идеальных газов изохорический процесс описывается законом Шарля: для данной массы газа при постоянном объёме, давление прямо пропорционально температуре: P/T = const.

Линия, изображающая изохорный процесс на диаграмме, называется изохорой.

Подведённая к газу теплота Q в изохорном процессе расходуется на изменение внутренней энергии U газа. Так, для одноатомного идеального газа

Q = Δ U = 32ν RT = 3 V ·Δ P,

где R — универсальная газовая постоянная,

ν — количество молей газа,

T — абсолютная температура в кельвинах,

V — объём газа,

Δ P — приращение давления.

 

Изотермический процесс

Изотермический процесс (от др.-греч. ἴσος «равный» и θέρμη «жар») — процесс изменения состояния термодинамической системы при постоянной температуре (T=const). Изотермический процесс в идеальных газах описывается законом Бойля — Мариотта:

 

При постоянной температуре и неизменных значениях массы газа и его молярной массы, произведение объёма газа на его давление остаётся постоянным: PV = const.

 

Изоэнтропийный процесс

Изоэнтропийный процесс — процесс изменения состояния термодинамической системы при постоянной энтропии (S=const). Изоэнтропийным является, например, обратимый адиабатический процесс: в таком процессе не происходит теплообмена с окружающей средой. Идеальный газ в таком процессе описывается следующим уравнением

где γ — показатель адиабаты, определяемый типом газа.

 

 

Первый закон термодинамики

 

Первый закон термодинамики — Изменение внутренней энергии ΔU не изолированной термодинамической системы равно разности между количеством теплоты Q, переданной системе, и работой A внешних сил


Вместо работы А, совершаемой внешними силами над термодинамической системой, часто удобнее бывает рассматривать работу A’, совершаемую термодинамической системой над внешними телами. Так как эти работы равны по абсолютному значению, но противоположны по знаку:

 

Тогда после такого преобразования первый закон термодинамики будет иметь вид:

 

Первый закон термодинамики — В не изолированной термодинамической системе изменение внутренней энергии равно разности между полученным количеством теплоты Q и работой A’, совершаемой данной системой

Говоря простым языком первый закон термодинамики говорит о энергии, которая не может сама создаваться и исчезать в никуда, она передается от одной системы к другой и превращается из одной формы в другую (механическая в тепловую).

Важным следствием первого закона термодинамики является то, что невозможности создать машину (двигатель), которая способна совершать полезную работу без потребления энергии извне. Такая гипотетическая машина получила название вечного двигателя первого рода.

 


Поделиться с друзьями:

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.014 с.