Жизнь в условиях ортогональности — КиберПедия 

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Жизнь в условиях ортогональности



 

Ортогональность тесно связана с принципом DRY ("Не повторяй самого себя"). Используя этот принцип, можно свести к минимуму дублирование в пределах системы, а при помощи ортогональности уменьшить взаимозависимость между компонентами системы. Звучит неуклюже, но если вы используете принцип ортогональности в тесной связи с принципом DRY, вы обнаружите, что разрабатываемые вами системы становятся более гибкими, более понятными и более простыми в отладке, тестировании и сопровождении.

Когда вы присоединяетесь к проекту, в котором люди ведут отчаянную борьбу за внесение изменений, а каждое изменение приводит к появлению четырех новых проблем, вспомните кошмар с вертолетом. Вероятно, проект сконструирован и запрограммирован неортогонально. Пришло время реорганизации.

 

Другие разделы, относящиеся к данной теме:

 

• Пороки дублирования

• Средства управления исходным текстом

• Проектирование по контракту

• Несвязанность и закон Деметера

• Метапрограммирование

• Всего лишь представление

• Реорганизация

• Программа, которую легко тестировать

• Злые волшебники

• Команды прагматиков

• Все эти сочинения

 

Вопросы для обсуждения

 

• Рассмотрим различие между большими инструментальными средствами, ориентированными на графический интерфейс, которые обычно присутствуют в системах в среде Windows, и небольшими, но сочетаемыми между собой утилитами, работающими в режиме командной строки и присутствующими в командных оболочках. Какой набор является более ортогональным и почему? Какой из них легче использовать именно для той цели, для которой он предназначен? Какой из них легче скомбинировать с другими инструментальными средствами для решения вновь возникших проблемных вопросов?

• Язык С++ поддерживает множественное наследование, а язык Java позволяет классу реализовывать множественные интерфейсы. Как влияет на ортогональность использование этих средств? Есть ли различие в воздействии, которое оказывается в ходе использования множественного наследования и множественных интерфейсов? Есть ли разница в применении делегирования и наследования?

 

Упражнения

 

1. Создается класс Split, который расщепляет вводимые строки на поля. Какая из двух указанных ниже сигнатур класса Java имеет более ортогональную конструкцию? (Ответ см. в Приложении В.)

class Split 1 {

public Splitl(InputStreamReader rdr) {…

public void readNextLine() throws IOException {…

public int numFields() {…



public String getField(int fieldNo) {…

}

 

class Split2 {

public Split2(String line) {…

public int numFields() {…

public String getField(int fieldNo) {…

}

2. Какая конструкция обладает большей ортогональностью: немодальные или модальные диалоговые окна? (Ответ см. в Приложении В.)

3. Сравним процедурные языки и объектно-ориентированные технологии. Что дает более ортогональную систему? (Ответ см. в Приложении В.)

 

 

Обратимость

 

Нет ничего опаснее идеи, если это единственное, что у вас есть.

Эмиль-Огюст Шартье, Разговор о религии, 1938

 

Технические специалисты предпочитают простые и однозначные решения задач. Математические тесты, позволяющие с большой уверенностью сказать, что х = 2, намного лучше, чем нечеткие, но страстные очерки о миллионах причин Французской революции. К техническим специалистам присоединяются и менеджеры: однозначные и несложные ответы хорошо вписываются в электронные таблицы и проектные планы.

Если бы это находило отклик в реальном мире! К сожалению, сегодня икс может быть равен двум, а завтра он должен быть равен пяти, а на следующей неделе – трем. Ничто не вечно, и если вы всерьез полагаетесь на некоторое явление, то этим вы практически гарантируете, что оно непременно изменится.

Для реализации чего-либо всегда существуют не один-единственный способ и не одна фирма-субподрядчик. Если вы начинаете работать над проектом, недальновидно полагая, что для его осуществления имеется один-единственный способ, то вы можете быть неприятно удивлены. Многим проектным командам открывают глаза принудительно, по мере развития событий:

 

"Но вы же сказали, чтобы мы использовали базу данных XYZI. Мы написали 85 % текста проекта – мы не можем изменить его в данный момент", – протестует программист. "Очень жаль, но наша фирма решила вместо нее взять за основу базу PDQ – для всех проектов. Это немое решение. Мы все должны переписывать тексты программ… Всем вам придется работать и по выходным – до особого распоряжения".



 

Конечно, принимаемые меры не должны быть столь драконовскими, сколь и неотложными. Но поскольку время идет, а ваш проект продвигается, вы можете оказаться в шатком положении. С принятием каждого важного решения проектная команда ставит перед собой все более узкую цель – ограниченную версию действительности, в которой имеется меньшее число вариантов.

К тому времени, когда многие важные решения уже приняты, цель уменьшится настолько, что, если она двинется с места или ветер изменит направление, или же бабочка в Токио взмахнет своими крылышками, вы промахнетесь [9]. И здорово промахнетесь.

Проблема состоит в том, что непросто дать задний ход важным решениям.

Как только вы решите использовать базу данных этой фирмы или архитектурный шаблон, или определенную модель развертывания (например, «клиент-сервер» вместо автономной модели), то вы становитесь на путь, с которого невозможно свернуть – лишь ценой огромных затрат.

 

Обратимость

 

Многие из тем, затронутых в данной книге, нацелены на создание гибкого, легко адаптируемого программного обеспечения. Следуя их рекомендациям – в особенности принципу DRY, принципу несвязанности и использованию метаданных (см. ниже), нет нужды в принятии многих важных необратимых решений. Это и хорошо, поскольку вначале мы не всегда принимаем наилучшие решения. Мы придерживаемся некоторой технологии лишь для того, чтобы в один прекрасный день обнаружить, что не в состоянии нанять достаточное количество людей, обладающих необходимыми навыками. Стоит нам остановить свой выбор на некоторой фирме-субподрядчике, как ее сразу перекупают конкуренты. Требования, пользователи и аппаратные средства изменяются быстрее, чем мы разрабатываем программное обеспечение.

Предположим, что в начале проекта вы решили использовать реляционную базу данных, производимую фирмой А. Позже, во время нагрузочного тестирования, вы обнаруживаете, что база данных слишком медленная, а объектная база данных фирмы В работает быстрее. В большинстве случаев, вам не везет. Большую часть времени обращения к программам фирм-субподрядчиков запутываются в тексте программ. Но если вы действительно вычленили идею базы, поместив ее снаружи – в точку, где она просто обеспечивает сохранение состояния объектов (как служба), тогда вы обладаете достаточной гибкостью, чтобы менять коней на переправе.

Предположим, что проект начинается по модели «клиент-сервер», но затем, когда карты уже сданы, отдел маркетинга решает, что для некоторых заказчиков серверы слишком дороги и они хотят сделать автономную версию. Насколько сложным будет для вас этот переход? Поскольку речь идет о развертывании, для этого потребуется минимум несколько дней. Если бы времени требовалось больше, вы бы и не думали об обратимости. Обратная задача еще интереснее. Что будет, если возникнет необходимость в развертывании автономной версии разрабатываемого вами проекта по схеме «клиент-сервер» или по n-звенной модели? Это также не должно представлять затруднений.

Ошибка состоит в предположении, что любое решение высечено на камне, и в неготовности к случайностям, которые могут возникнуть. Вместо того, чтобы высекать решения на камне, рассматривайте их так, как будто они начерчены на морском песке. В любой момент может накатиться большая волна и смыть их.

 

 

Подсказка 14: Не существует окончательных решений

 

Гибкая архитектура

 

В то время как многие люди пытаются сохранить свои программы гибкими, вам также стоит подумать о том, чтобы обеспечить гибкость архитектуры, развертывания и интеграции продуктов фирм-субподрядчиков.

Технологии, подобные CORBA, могут помочь в защите компонентов проекта от изменений, происходящих в языке, на котором ведется разработка, или в платформе. Вдруг производительность Java на этой платформе не соответствует ожиданиям? Еще раз напишите программу клиента на языке С++, и больше ничего менять не нужно. Подсистема правил в С++ не отличается достаточной гибкостью? Перейдите к версии на языке Smalltalk. При работе с архитектурой CORBA вы должны обращать внимание только на заменяемый компонент, другие компоненты трогать не нужно.

Вы разрабатываете программы для Unix? Какой версии? Вы рассмотрели все из аспектов переносимости? Вы пишете для конкретной версии Windows? Какой – 3.1, 95, 98, NT, СЕ или же 2000? Насколько сложно будет обеспечить поддержку других версий? Если ваши решения характеризуются мягкостью и пластичностью, то это будет совсем несложно. Но это будет невозможно, если пакет неудачно сформирован, есть высокий уровень связанности, а в тексты программ встроена логика или параметры.

Вы не знаете точно, как отдел маркетинга собирается развертывать систему? Подумайте об этом заранее, и вы сможете обеспечить поддержку автономной модели, модели "клиент – сервер" или n-звенной модели только за счет изменений в файле конфигурации. Мы создавали программы, которые действуют подобным образом.

Обычно вы можете просто скрыть продукт фирмы-субподрядчика за четким, абстрактным интерфейсом. На самом деле мы могли это сделать с любым проектом, над которым мы работали. Но предположим, что вы не смогли изолировать его достаточно четко. Вам пришлось раскидать некоторые инструкции по всей программе? Поместите это требование в метаданные и воспользуйтесь автоматическим механизмом, наподобие Aspect (см. "Инструментарии и библиотеки") или Perl для вставки необходимых инструкций в саму программу. Какой бы механизм вы ни использовали, сделайте его обратимым. Если что-то добавляется автоматически, то оно может и удаляться автоматически.

Никто не знает, что может произойти в будущем, в особенности мы! Дайте вашей программе работать в ритме рок-н-ролла: когда можно – качаться, а когда нужно – энергично крутиться.

 

Другие разделы, относящиеся к данной теме:

 

• Несвязанность и закон Деметера

• Метапрограммирование

• Всего лишь представление

 

Вопросы для обсуждения

 

• Немного квантовой механики – пример с кошкой Шрёдингера. Предположим, что в закрытом ящике сидит кошка, и в нем же находится радиоактивная частица. Вероятность распада частицы на две равна 50 %. Если распад произойдет, кошка умрет. Если не произойдет, кошка останется жива. Итак, умирает кошка или остается жива? Согласно Шрёдингеру, верно и то, и другое. Всякий раз, когда происходит ядерная реакция, у которой имеются два возможных результата, происходит клонирование мира. В одном из двух миров данное событие произошло, а в другом – нет. Кошка жива в одном из миров и мертва в другом. Лишь открыв ящик, вы осознаете, в каком из миров находитесь вы.

Не удивительно, что программировать на перспективу так трудно.

Но подумайте об эволюции программы по аналогии с ящиком, в котором находится множество кошек Шрёдингера: каждое решение приводит к появлению иной версии будущего. Сколько сценариев будущего поддерживает ваша программа? Какие из них наиболее вероятны? Насколько сложно будет поддерживать их в определенный момент в будущем?

Хватит ли у вас смелости открыть ящик?

 

 

Стрельба трассирующими

 

На изготовку, по цели – пли!

 

Существует два способа стрельбы из пулемета в темное время суток [10]. Вы можете выяснить точно, где находится ваша цель (расстояние, высота и азимут). Вы можете определить погодные условия (температура, влажность, давление, направление ветра и так далее). Вы можете точно определить характеристики используемых вами патронов и пуль и их взаимодействие с реальным пулеметом, из которого вы стреляете. Затем вы можете воспользоваться таблицами или компьютером для вычисления точного азимута и угла возвышения ствола пулемета. Если все работает в точном соответствии с характеристиками, таблицы корректны, а погодные условия не меняются, то пули должны лечь близко к цели. Можно также использовать трассирующие пули.

Трассирующие пули помещаются на пулеметную ленту через равные промежутки наряду с обычными боеприпасами. При стрельбе фосфор, содержащийся в них, загорается и оставляет пиротехнический след, идущий от пулемета до любого места, в которое эти пули попадают. Если в цель попадают трассирующие пули, то, значит, в нее попадут и обычные.

Не удивительно, что стрельбу трассирующими предпочитают математическим расчетам. Обратная связь возникает немедленно, и поскольку трассирующие пули работают в той же среде, что и обычные боеприпасы, то внешние воздействия сведены к минимуму.

Возможно это слишком сильная аналогия, но она применима к новым проектам, особенно когда вы создаете то, чего раньше не было. Подобно стрелкам, вы пытаетесь поразить цель в темноте. Ваши пользователи никогда ранее не видели ничего подобного, поэтому их требования могут быть расплывчатыми. Вы же, в свою очередь, наверняка применяете алгоритмы, методики, языки или библиотеки, с которыми не знакомы, то есть сталкиваетесь с большим количеством неизвестных. И поскольку для выполнения проекта требуется время, вы можете с уверенностью гарантировать, что к моменту окончания работы среда, в которой вы работаете, изменится.

Классический способ решения проблемы – предельно специфицировать систему. Написать горы бумажной документации, регламентирующих каждое требование, связывая каждое неизвестное и ограничивая рабочую среду. Стрелять при помощи жесткого расчета. Один большой предварительный расчет, затем стрельнуть и надеяться.

Однако программисты-прагматики предпочитают стрелять трассирующими.

 






Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...





© cyberpedia.su 2017 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав

0.01 с.