Степени точности цилиндрических зубчатых колес. — КиберПедия 

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Степени точности цилиндрических зубчатых колес.

2017-06-03 1751
Степени точности цилиндрических зубчатых колес. 0.00 из 5.00 0 оценок
Заказать работу

Зубчатые колеса изготовляют с погрешностями, вызываемыми погрешностями профиля зубообрабатывающих инструментов (фрез, долбяков), неточностью их установки на станке, отклонения размеров и формы заготовки, а так же неточностью установки заготовки на станке, погрешностями в кинематических цепях станка. Совместное действие перечисленных погрешностей приводит к кинематической погрешности колеса, неплавности его работы и нарушению прилегания поверхности зубьев как по длине, так и по высоте зуба. Предельное отклонение параметров зубчатого колеса ограничены системой допусков.

По точности изготовления зубчатые колеса разделяют на 12 степеней точности (в порядке убывания точности).

Степень точности – заданный уровень допустимого несоответствия знаний их действительных параметров расчетным (номинальным) значением. Допуски установлены для степеней точности от 3-й, до 12-й. Для 1-й и 2-й степени точности допуски будут вводиться по мере надобности. В машиностроении, например, применяют зубчатые передачи следующих степеней точности:

- 3 – 6-й – в редукторах турбин;

- 3 – 8-й – в металлорежущих станках;

- 4 – 7-й – в авиадвигателях;

- 5 – 8-й – в легковых автомобилях;

- 8 – 11-й – в грузоподъемных и сельскохозяйственных машинах.

Измерительные или образцовые колеса изготовляют по 3 – 5-й степени точности.

Для дифференциации точности колес в зависимости от их служебного назначения зубчатые передачи условно подразделяют на отсчетные, скоростные, силовые и общего назначения. К отсчетным относят передачи с высокой кинематической точностью, например колеса, входящие в кинематические цепи приборов, станков, следящих устройств, а так же колеса координатных измерительных машин.

Важнейшим требованием работы скоростных передач автомобилей, станков, двигателей и турбин является плавность и бесшумность работы при высоких частотах вращения.

Силовые передачи – передачи грузоподъемных машин, тракторов и штампов. При работе такой передачи должна быть обеспечена полнота контакта зубьев в зацеплении.

В соответствии с перечисленными группами передач построена система допусков на зубчатые колеса. Все показатели точности передач и колес сгруппированы в 3 нормы точности, характеризующие кинематическую точность, плавность работы и контакт зубьев.

Нормы кинематической точности определяют точность передачи вращения с одного вала на другой, т.е. величину полной погрешности (ошибки) угла поворота ведомого зубчатого колеса в пределах его полного оборота. Нормы плавности работы характеризуют равномерность вращения или степень плавности изменения кинематической погрешности передач. Нормы контакта зубьев отражают полноту прилегания поверхностей зубьев сопряженных колес в передаче.

Степени точности назначают для каждой из норм точности дифференцированно с учетом того, к какой группе относится данная передача, т.е. допускается комбинирование степеней точности – назначение для всех норм разных степеней точности. Для передач общего назначения для всех норм точности назначают одинаковую степень точности, например 7-ю степень. При комбинировании степеней точности требуется, чтобы нормы плавности работы были не более, чем на 2 степени точнее или на 1 степень грубее нормы плавности. В результате комбинирования степеней точности по 3-ем нормам улучшаются эксплуатационные качества колеса без значительного повышения стоимости его изготовления.

Не зависимо от точности изготовления передач и колес (нормы кинематической точности, плавности работы и контакта зубьев) дополнительно назначают требования к боковому зазору между нерабочими профилями зубьев в собранной передачи, объединенные в норму бокового зазора.

Боковой зазор обеспечивает небольшой люфт (поворот) зубчатого колеса в передаче при заторможенном или неподвижном втором колесе. Зазор необходим для предотвращения заклинивания передачи при ее нагреве во время работы, для компенсации ошибок монтажа и для обеспечения смазывания колес. Зазор Jnmin показан на рисунке 51 а.

Для зубчатых передач с модулем св.1 мм. Установлено 6 видов сопряжений А, В, С, Д, Е и Н (рисунок 56), которые определяют величину гарантированного наименьшего бокового зазора Jn min.

Для зубчатых передач с модулем до 1 мм предусмотрено 5 видов сопряжения D, E, F, G, Y. На каждый вид сопряжений установлен допуск Тin бокового зазора, обозначенный строчной буквой латинского алфавита. Например, для передач с модулем св. 1 мм видом сопряжения H и E соответствует вид допуска на боковой зазор h, сопряжениям D, C, B, и F – соответственно в виде допусков d, c, b, и a. Вместо предусмотренных выше видов допуска для каждого вида сопряжения при необходимости могут быть использованы увеличенные допуски x, y, z. Таким образом, соответствие между видом сопряжений зубчатых колёс в передачи и видом допуска на боковой зазор можно не менять. Для передач с модулем до 1 мм видом сопряжений D и E соответствует вид допуска на боковой зазор е, а видом сопряжений F, G и H – виды допусков f, g, h соответственно.

 

Рисунок 56 - Боковой зазор зубчатого зацепления:

а -виды сопряжений и допуски Тin на боковой зазор– б.

 

Для нерегулируемых передач с модулем св. 1 мм установлено 6 классов отклонения межосевого расстояния, обозначаемых в порядке убывания точности римскими цифрами I, II, III, IV,V,VI, а для передач с модулем до 1 мм 5 классов: II, III, IV, V, VI. Гарантированный боковой зазор в каждом сопряжении обеспечивается при соблюдении предусмотренных классов отклонений межосевого расстояния.

Например для передач с модулем св. 1 мм сопряжения H и E обеспечиваются при II классе, а сопряжения D, C, B, и A –соответственно при III, VI и I классах; для передач с модулем до 1 мм сопряжения H – при классе, а сопряжения G, F, E, и D –при III, IV,V и VI классах соответственно. В обоснованных случаях это соответствие между видом сопряжения и классом отклонений межосевого расстояния может изменяться.

Структура допусков для цилиндрических зубчатых колёс и передач приведена на рис.55.

Показатели точности зубчатой передачи являются комплексными, поэтому контроль по указанному показателю предпочтителен. Если кинематическая точность и плавность работы собранной передачи соответствует требованиям стандарта, то контроль колёс в отдельности по этим нормам не проводится. При раздельном предварительном контроле колёс, входящих в передачу, контроль собранной передачи не является обязательным это положение распространяется и на контроль по нормам контакта зубьев. Каждый показатель точности ограничивается допуском, обозначаемым аналогично показателю точности но с опущенной в индексе последней буквой r (r -реальный). Например, показатель Fio –небольшая кинематическая погрешность передачи, а Fio –допуск на кинематическую погрешность в передачи; Fr r–это радиальное биение зубчатого венца, а Fr –допуск на радиальное биение зубчатого венца. Наименование показателей точности приведено ниже при рассмотрении норм точности.

Виды сопряжений зубьев колёс в передачи влияют на нормальную работу передачи и в значительной степени определяются наличием гарантированного бокового зазора.

Боковой зазор Jn – это зазор между неработающими профилями зубьев сопряженных колёс, определяемый в сечении перпендикулярно направлению зубьев, в плоскости, касательной к основной окружности.

Боковой зазор в собранной открытой передачи можно контролировать с помощью индикатора, установленного измерительным стержнем на боковую активную поверхность зуба. При этом сопрягаемое колесо должно быть застопорено. Покачиванием колеса от упора выбирают боковой зазор, который будет равен наибольшей разности показаний индикатора.

В закрытых передачах боковой зазор измеряется с помощью свинцовой проволоки, закладываемой между рабочей поверхностью зубьев. Измеряя толщину свинцовой проволоки после проворачивания колеса, определяют величину бокового зазора.

Боковой зазор предназначен для создания необходимых условий смазки зубьев, компенсации погрешностей изготовления колеса и сборки передачи, компенсации температурных деформаций в передаче. Недостаточность величины бокового зазора может привести к заклиниванию передач. С другой стороны, чрезмерное увеличение создает опасность возникновения ударов при реверсировании передачи.

В слабонагруженных механизмах, где рабочая температура незначительна, межосевое расстояние невелико, боковой зазор может быть равен нулю. Но в зубчатых передачах тракторов, автомобилей и сельскохозяйственных машин должен быть определенный гарантированный боковой зазор. Его можно определить через отклонение средней длины общей нормали и через отклонение толщины зуба.

Наименьшее отклонение толщины зуба Ecs - наименьшее предписанное уменьшение постоянной хорды осуществляемое с целью обеспечения в передаче гарантированного бокового зазора.

 

Толщину зуба по постоянной хорде S (рис. 57) измеряют штангензубомером (рис 59).

Штангензубомер состоит из. двух штанг, перпендикулярно одна к другой и составляющих одно целое, двух недвижных рамок с нониусами и механизмами микрометрической подачи.

Рисунок 57 - Толщина зуба по постоянной хорде.

 

Толщину зуба измеряют по постоянной хорде. Для того, чтобы измерение выполнить именно по постоянной хорде, упор необходимо установить по вертикальной штанге на расстоянии от кромок измерительных наконечников, равном

,(18)

где m– модуль, зубчатого колеса, мм.

 

  Допуски цилиндрических зубчатых колес и передач    
     
       
Степени точности    
                     
     
  нормы    
     
               
Кинематической точности   Плавности работы   Контакта зубьев   Норма бокового зазора  
                 
        Виды сопряжений  
A B C D E H  
     
Показатели точности зубчатой передачи  
           
    fxr и fyr Суммарное пятно контакта. Мгновенное пятно контакта   for – нерегулируемого расположения осей; Jn min - регулируемого расположения осей  
           
 
           
Показатели точности зубчатого колеса  
           
FPr и FPkr Fcr и Frr FvWr и Frr Frr и FPr   fzkr fPbr и ffr fPbr и fPtr fPbi   FBr, Fkr FPxnr и Fkr fPbr и FPxnr   EHr, EWmr EWr; Ecr  
     
                                                                                 

Рисунок 58 - Структура допусков для цилиндрических зубчатых колёс и передач.

Рисунок 59 - Штангензубомер.

При измерении следует внимательно следить, чтобы между упором штангензубомера и вершиной зуба не было просвета. Номинальный размер толщины зуба (для некорригированных колес при α=20°) определяется по формуле:

(19)

Однако на практике определяют не толщину зуба, а длину постоянной хорды S.

Постоянная хорда зуба S равна отрезку прямой, соединяющей точки правой и левой эвольвентной боковых поверхностей зуба цилиндрического зубчатого колеса. Положение этих точек определяется нормалями, проведенными к боковым поверхностям зуба из точки пересечения делительной окружности зубчатого колеса с осью зуба.

Для измерения постоянной хорды необходимо знать расстояние hs между касательной, проведенной к вершине зуба и постоянной хордой.

Принцип измерения длины хорды ясен из рис. 59. Штангензубомеры, обеспечивающие точность отсчета до 0,2 мм, выпускают двух типоразмеров: для измерения зубчатых колес с модулем от 1 до 18 мм и от 5 до 36 мм.

К их недостаткам относятся низкая точность измерения, быстрый износ кромок измерительных наконечников, влияние на результаты измерения погрешности установки упора и погрешности окружности выступов.

Практическая часть

1. По чертежу детали установить;

–степень по норме кинематической точности:

–степень по норме плавности работы;

–вид сопряжения;

-допуск бокового зазора;

–модуль (m);

–число зубьев (Z).

2. Рассчитать номинальный размер толщины зуба по постоянной хорде, если угол профиля исходного контура α= 20°,

 

(20)

3. Рассчитать диаметр делительной окружности:

(21)

4. По приложению Д определить верхнее отклонение толщины зуба (Ecs) с учетом величины диаметра делительной окружности, степени точности по нормам плавности работу зубчатой передачи, вида сопряжения.

5. Определить величину допуска на радиальное биение зубчатого венца (Fr) по приложению Е с учетом диаметра делительной окружности и величины модуля, в соответствии с нормой кинематической точности или по чертежу детали.

6. Определить допуск на толщину зуба Тс по приложению Ж с учетом вида сопряжения, допуска на боковой зазор, допуска на радиальное биение зубчатого венца.

7. Рассчитать нижнее отклонение толщины зуба:

(22)

8. Записать номинальный размер толщины зуба и величины предельный отклонений

9.Рассчитать расстояние от вершины зуба до постоянной хорды hs:

(23);

при αд=20о; hs=0,748m (24).

10. Установить упор вертикальной штанги штангензубомера в соответствии с рассчитанной величины hs (для того, чтобы измерение выполнить именно по постоянной хорде.

11. Измерить действительную величину толщины зуба с помощью горизонтальной штанги штангензубомера. Выполнить измерения 4-х зубьев в диаметрально противоположных направлениях. Рассчитать среднее арифметическое значение действительного размера.

12. Рассчитать предельные значения толщины зубьев.

13. Принять решение о годности размера.

14. В случае исправимого брака назначить вид необходимой механической обработки.

 

Контрольные вопросы

1) Назначение бокового зазора в зубчатой передаче?

2) Что называется постоянной хордой?

3) Устройство штангензубомера?

4) Перечислите недостатки штангензубомера?

5) Объясните настройку штангензубомера для измерения толщины зуба по хорде делительной окружности?

6) Напишите формулы определения толщины зуба по делительной окружности?


Лабораторная работа №8

ОФОРМЛЕНИЕ ПЕРВИЧНОЙ ДОКУМЕНТАЦИИ СЕРТИФИКАЦИОННЫХ ИСПЫТАНИЙ


Поделиться с друзьями:

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.06 с.