Многоразовые транспортные космические системы — КиберПедия 

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Многоразовые транспортные космические системы

2017-06-03 596
Многоразовые транспортные космические системы 0.00 из 5.00 0 оценок
Заказать работу

Историческая справка о крылатых космических аппаратах.
В 1932-1942 гг. в Германии под руководством Зенгера разрабатывался проект бомбардировщика. Проект предусматривал создание самолета, который, используя рельсовую стартовую тележку, разгонялся до высокой скорости, затем, включая собственный ракетный двигатель, поднимался за пределы атмосферы, откуда совершая рикошетирующий полет в плотных слоях атмосферы, достигал большой дальности действия. Самолет, стартовавший из Западной Европы и приземлявшийся на территории Японии, предназначался для бомбардировки территории США. Последние сообщения о такого рода крылатом летательном аппарате, бомбардировщике-антиподе, были в 1944 г. В 50-х годах в США он послужил толчком к разработке проекта космического самолета, который был предшественником проекта ракетоплана "Дайна-Сор". В Советском Союзе предложения о разработке такого рода систем рассматривались у А.С.Яковлева, А.М.Микояна, В.М.Мясищева в 1947 г., но развития они не получили из-за ряда трудностей, связанных с технической реализацией проекта.
С бурным развитием ракетной техники в период 1947-1953 гг. необходимость в завершении работ по пилотируемому бомбардировщику-антиподу отпала. В ракетной промышленности сформировалось направление крылатых ракет баллистического типа, которые, исходя из общей концепции их применения, нашли свое место в общей системе обороны страны. В CША оно поддерживалось военными: в то время считалось, что обычные самолеты или самолеты-снаряды с воздушно-реактивными двигателями являются наилучшим средством доставки зарядов на территорию противника. Родились проекты по программе планирующих ракет "Навахо". Фирма "Белл Эйркрафт" продолжала исследования космического самолета для того, чтобы использовать его не в качестве бомбардировщика, а как разведывательный аппарат. В 1960 г. был заключен контракт с фирмой "Боинг" на разработку суборбитального разведывательного ракетоплана "Дайна-Сор", который предполагалось выводить ракетой "Титан-3".

В начале 60-х годов в КБ А.И.Микояна начались исследования двух вариантов суборбитального самолета. В первом предусматривался самолет-разгонщик, во втором - ракета "Союз" с орбитальным самолетом. Двухступенчатая воздушно-космическая система, разрабатываемая под руководством Г.Е.Лозино-Лозинского, именовалась "Спираль" или проект "50/50".
Орбитальный корабль-ракетоплан стартовал со спины мощного сверхзвукового самолета-носителя на высоте 20-30 км. Ракетоплан "Спираль" на жидкостных ракетных двигателях достигал околоземной орбита, выполнив все запланированные работы на орбите, возвращался на Землю, планируя в атмосфере, и садился на аэродром. Функции этого компактного летающего космического корабля-аэроплана были значительно шире, чем только работа на орбите. Натурная модель ракетоплана совершила несколько полетов в атмосфере.
Советский проект предусматривал создание аппарата массой более 10 т, со складывающимися консолями крыла. Опытный вариант аппарата в 1965 г. был готов к первому полету как дозвуковой аналог. Полеты выполнялись летчиками-испытателями И.Волком, В.Меницким, А.Федотовым и А.Фастовцом. Позже проводились полеты аналога с его отцепкой от самолета-носителя Ту-95К.
Для решения проблем теплового воздействия на конструкцию в полете и управляемости аппарата на дозвуковых и сверхзвуковых скоростях были созданы летающие модели, которое получили название "Бор". Их испытания были проведены в 1969-1973 гг. Глубокое изучение данных, полученных по результатам этих испытаний, привело к необходимости создания двух моделей "Бор-4" и "Бор-5".
Программы ВВС США и НАСА по освоению техники входа в атмосферу продолжались. Самолеты Х-15, Х-23, аппараты с несущим корпусом М2 F2/F3, HL-10, X24A/B готовили путь "Спейс Шаттлу".
Первый полет "Бора-4" был осуществлен 4 июня 1982 года. Модель выводилась на орбиту с космодрома Капустин Яр ракетами серии "Космос". Дальнейшие пуски этой серии состоялись в марте и декабре 1983 года и декабре 1984 года. Аппараты "Бор-4" были первыми отечественными воздушно-космическими летательными системами, способными маневрировать в атмосфере с использованием аэродинамического качества несущего корпуса и рулей. Проведенные исследования были позднее использованы в создании орбитального корабля "Буран". Пуски масштабной модели "Бор-5" продолжали исследования, начатые серией "Бор-4" на суборбитальной траектории. Первый пуск состоялся в июле 1983 г. К этому времени "Спейс Шаттл" совершил уже семь полетов с экипажами на борту. С появлением "Спейс Шаттла" весь космический мир бросился в создание такого рода систем.
Имея опыт разработки самолетов, специалисты в области ракетно-космической техники стали концентрироваться на концепции создания воздушно-космического самолета, считая, что тип полностью многоразового крылатого летательного аппарата с многорежимным двигателем, работающим в широком диапазоне скоростей - от дозвуковых до сверхзвуковых, в атмосфере и вне ее, используя атмосферный и бортовой кислород, может быть выбран в качестве транспортной космической системы.

Многоразовые космические системы США. Программа НАСП (NASP - в переводе: национальный аэрокосмический самолет) - самая крупная из всех известных программ создания экспериментальных самолетов в США. Основная цель программы - разработка соответствующей технологии создания аэрокосмических аппаратов, способных длительное время летать с гиперзвуковьми скоростями в пределах атмосферы и служить средством доставки полезного груза на орбиту.
Работы по программе НАСП были начаты в 1982 г. под руководством Управления перспективных исследований Министерства обороны. В апреле 1986 г. были заключены основные контракты с промышленными фирмами. В июле 1986 г. между НАСА и Министерством обороны был подписан заключительный меморандум. Были предусмотрены три этапа работ по программе НАСП - Экс-30. Первый этап, 1982-1985 гг., охватывает предварительные проектные исследования и анализ возможных вариантов летательного аппарата, оценку ключевых технологических направлений, технического риска и мероприятий по его снижению.
Второй этап, 1986-1990 гг., включает разработку систем летательного аппарата, конструкции планера и материалов, разработку и наземные испытания базовых конструктивных элементов планера и маршевой двигательной установки, а также оценки живучести конструкции и экономической рентабельности.
Третий этап, 1990-1994 гг., предусматривает строительство и испытания трех экспериментальных самолетов Экс-30. Два самолета для трансатмосферных летных испытаний и один - для наземных статических испытаний.
По первоначальным планам, атмосферные испытательные полеты самолета должны были проводиться в конце 1994 - начале 1995 гг., а орбитальные полеты - в период 1996-1997 гг. В 1998 г. предполагалось начать изготовление эксплуатационного образца одноступенчатого космического самолета НАСП, первый орбитальный полет которого может быть осуществлен в 2005 г.
Эксперты полагали, что стартовая масса космического самолета составит 147 т, длина в пределах 46-61 м. Пилотировать аппарат будет экипаж из двух человек. В качестве комбинированной двигательной установки, конструктивно объединенной с планером, будут использованы 3-5 ГПВРД и один жидкостной двигатель тягой 23-32 т. Масса полезного груза, выводимого на низкую околоземную орбиту, составляет 9 т.
По своим техническим, технико-экономическим и эксплуатационным характеристикам воздушно-космический самолет НАСП должен превосходить все существующие военные и коммерческие самолеты и космические транспортные системы. Критическими технологическими направлениями программы НАСП являются: гиперзвуковые прямоточные воздушно-реактивные двигатели (ГПВРД), перспективные материалы, обладающие высокой прочностью, термостойкостью, малой плотностью и обеспечивающие создание полностью многоразовой конструкции самолета, эффективное использование жидкого водорода как горючего маршевой двигательной установки и как хладагента для активного охлаждения конструкции.
Особые надежды на аэрокосмические аппараты возлагали военные специалисты, которые рассчитывали получить в свое распоряжение полностью многоразовую воздушно-космическую систему, оперативно обеспечивающую глобальное присутствие путем быстрого, за один-два часа, выхода в любую точку околоземного пространства - "старт на орбиту по команде". Эта система обеспечит новые стратегические возможности, не сравнимые с возможностями современных бомбардировщиков и баллистических ракет.
В начале 80-х годов, особенно после провозглашения президентом Р.Рейганом в марте 1983 г. новой стратегической доктрины, предусматривающей создание глобальной системы противоракетной обороны с элементами космического базирования, в Соединенных Штатах широким фронтом были развернуты работы по оперативным малоразмерным одноступенчатым аэрокосмическим летательным аппаратам военного назначения. Министерство обороны и Национальное аэрокосмическое агентство США дают следующее определение программе НАСП: "Это - техническая разработка и демонстрация возможности создания гиперзвуковых летательных аппаратов для будущих космических транспортных систем и сверхскоростной военной и гражданской авиации. Ближайшая цель программы - изготовление и демонстрация экспериментального аппарата Экс-30 (Х-30), а также разработка соответствующей технологии для создания летательных аппаратов, способных длительное время летать с гиперзвуковыми скоростями в пределах атмосферы и служить средством доставки полезного груза на орбиту".
Ключевым элементом конструкции одноступенчатого аэрокосмического аппарата с совершенными энергомассовыми характеристиками является комбинированный турборакетный прямоточный воздушно-реактивный маршевый двигатель. С момента старта до скорости 6 Махов комбинированная двигательная установка использует воздух атмосферы для создания дополнительной тяги, а основная тяга создается жидкостным ракетным двигателем. При скорости М=6 уже большая часть тяги создается с использованием атмосферного воздуха, тяга жидкостного ракетного двигателя лишь дополняет ее. В таком режиме полет продолжается до скорости М=16, когда аэрокосмический аппарат выходит из атмосферы. С этого момента до орбитальной скорости используется только жидкостной ракетный двигатель.
Прямоточные воздушно-реактивные двигатели - основа двигательных установок гиперзвукового самолета - были впервые испытаны в 30-х годах в Германии в составе неуправляемых ракетных снарядов, а также в 40-х годах во Франции в составе пилотируемого самолета. Впоследствии прямоточные воздушно-реактивные двигатели применялись в Соединенных Штатах на некоторых ракетах. В 60-х годах разрабатывались прямоточные двигатели со сверхзвуковым горением. Были испытаны двигатели Национального аэрокосмического агентства и Лаборатории гиперзвуковых исследований для самолета Экс-15 (Х-15). В течение 15 лет в Центре Лэнгли создавался новый прямоточный двигатель, выполнено более тысячи испытаний систем двигателя, но в связи с тем, что в конце 60-х годов преимущественное распространение получила чисто баллистическая ракетная техника, разработки двигателя со сверхзвуковым горением были приостановлены, за исключением незначительных по масштабу работ в Центре Лэнгли и работ по ракетам с прямоточными двигателями для Военно-морского флота. Специалисты в этой области постарели, а большая часть стендового оборудования давно не используется по назначению или демонтирована.
Анализ американских специалистов различных вариантов одно- и двухступенчатых, крылатых и баллистических, стартующих вертикально и горизонтально оперативных летательных аппаратов показал, что наилучшие энергомассовые и эксплуатационные характеристики имеют одноступенчатые крылатые аэрокосмические аппараты НАСП, осуществляющие горизонтальный старт и горизонтальную посадку, с комбинированными маршевыми двигателями.
Однако при современном технологическом уровне относительная масса сухой конструкции одноступенчатых крылатых аппаратов составляет 0,14-0,2, а баллистических - 0,09-0,12, в зависимости от размеров ракет-носителей. Поэтому для создания крылатых одноступенчатых ракет-носителей с маршевыми жидкостными ракетными двигателями должен быть существенно повышен технологический уровень в области силовых конструкций ракет-носителей. В настоящее время носитель баллистического типа с маршевыми ракетными двигателями на водороде со средним удельным импульсом тяги 423 единицы и 455 - в пустоте - при относительной массе сухой конструкции 0,1 способен вынести на низкую орбиту полезный груз относительной массой около 1,7 %. Для получения более современных энергомассовых характеристик при существующей технологии реальны только двухступенчатые конструкции с крыльями, тогда как для создания одноступенчатых ракет-носителей на базе ракетных двигателей потребуется технология 2000-х годов.
Одним из радикальных путей совершенствования многоразовых транспортных систем является включение в ее состав маршевой двигательной установки, использующей кислород окружающей атмосферы как компонент топлива. Известно, что маршевой жидкостной ракетной установкой расходуется около 80 % топлива до высоты полета порядка 60 км. Применение на этом участке маршевых воздушно-реактивных двигателей позволило бы уменьшить наполовину заправляемый запас топлива и снизить стартовую массу ракеты-носителя.
Использование кислорода воздуха в маршевой двигательной установке существенно упрощает проблему создания аэрокосмических аппаратов с горизонтальным стартом и горизонтальной посадкой.
Американскими специалистами считается, что воздушно-реактивные двигатели в принципе обладают большими надежностью и ресурсом, чем жидкостные ракетные двигатели. Это объясняется тем, что рабочее давление в камере сгорания воздушного двигателя и, следовательно, рабочее давление за насосами более, чем на порядок, ниже соответствующих значений жидкостных ракетных двигателей. Поэтому удельная мощность агрегатов гораздо выше у жидкостных двигателей, чем у воздушных. Ресурс современных воздушно-реактивных двигателей составляет тысячи часов, тогда как достигнутый ресурс лучшего зарубежного жидкостного ракетного двигателя ССМИ (SSME) не превышает пока 2 ч. По техническому заданию ресурс должен стать не менее 7,5 ч.
Аэрокосмические летательные аппараты с воздушно-реактивными маршевыми двигательными установками для достижения орбитальной скорости должны длительное время разгоняться в плотных слоях атмосферы.
Сложные взаимозависимости параметров траектории выведения, характеристик двигателей и летательного аппарата в целом делают поиск оптимальных соотношений весьма трудоемким. Улучшение какого-либо одного из параметров связано непременно с ухудшением другого. Так, например, увеличение тяги двигателя относительно к его массе влечет за собой уменьшение удельного импульса тяги. Эффективность маршевых воздушно-реактивных двигателей улучшается с увеличением скоростного напора, однако связанное с этим упрочнение конструкции летательного аппарата может привести к уменьшению массы выносимого на орбиту полезного груза.
Но следует отметить, что в летательных аппаратах с маршевыми ракетными двигателями около 80 % запаса топлива расходуется на начальном участке полета, до высоты 60 км и скорости 2,3 км/с, то есть там, где было бы целесообразным применение воздушных двигателей с использованием кислорода из окружающей атмосферы. В этом плане значительный эффект может дать двигатель, который, используя особенности участка взлета аэрокосмического самолета, работает в многорежимных условиях.

Интерес к многорежимным двигателям велик. Работы по комбинированным маршевым двигателям для аэрокосмических самолетов велись в Англии для летательного аппарата "Хотол", в Германии - для "Зенгера", во Франции и Японии.

В Англии фирма "Ролс-Ройс" на собственные средства разрабатывала двигатель для "ХОТОЛа", который имел способ получения жидкого кислорода из атмосферного воздуха и создание его запаса на борту аэрокосмического самолета на участке выведения до высоты около 25 км для последующего сжигания его в двигателе.
Первые проработки по использованию сжиженного воздуха в камере сгорания комбинированного двигателя были выполнены в Соединенных Штатах в конце 60-х годов - проект "Синерджет".
Во Франции работа по двигателям аэрокосмичсеких летательных аппаратов проводилась фирмами "Снекма" и "СЭГР" с участием Национального управления аэрокосмических исследований в рамках трехлетнего, 1986-1988 гг., заказа Национального центра космических исследований КНЕС (CNES).
По контракту Европейского космического агентства ЕСА (ESA) итальянские фирмы "Фиат-Авиационе" и "СНИА-БПД" проводили исследования возможных схем летательных аппаратов. Параллельно подобные проработки вели германские фирмы МББ (МВВ) и МТУ (MTU).
Когда фирма "Дуглас эйркрафт" начинала производство своего самолета DC-3 в 1936 г., ее руководители не представляли перспектив этого проекта. Дональд Дуглас, основатель фирмы, сказал, что он будет рад продать хотя бы тысячу таких самолетов.
Фирма продала 10926 самолетов DC-3 только в первые девять лет производства. Этот самолет буквально изменил весь мир. В 1945 г. все 25 коммерческих авиакомпаний Соединенных Штатов эксплуатировали на своих линиях самолеты DC-3. Совершенная конструкция и простота эксплуатации открыли возможность осуществления воздушных путешествий для миллионов людей, значительно сократив расстояния между городами и странами.
Сфера космических полетов ожидает подобного прорыва. Дешевизна и надежность доступа в космос успели стать расхожей фразой, но так и не превратились в реальность. По мнению ряда американских экспертов, для действительного удешевления космических перевозок необходимо, чтобы наступила эра одноступенчатых многоразовых воздушно-космических аппаратов - дешевых космических аппаратов, которыми так и не смогли стать многоразовые транспортные космические корабли "Спейс Шаттл".
Несмотря на то, что работы по "Спейс Шаттлу" велись в направлении, предусматривающем многоразовое использование аппаратов, НАСА получило очень сложный и дорогой в эксплуатации транспортный космический аппарат, и сейчас тратит на выведение одного килограмма полезной нагрузки на орбиту гораздо больше, чем в 60-е годы. Действительная удельная стоимость доставки грузов в космос с помощью челнока примерно в сто раз превысила расчетную. Для его запуска и обслуживания наземного стартового комплекса требуется более 9000 человек. НАСА согласилось с допущением возможности проведения не более, чем 12 запусков в год, что существенно отличается от первоначальных оценок, когда рассматривалась возможность ежегодного осуществления не менее 40 стартов "Шаттла".
Удельная стоимость доставки груза на орбиту с помощью одноразовых ракет-носителей типа "Дельта" или "Ариан" составляла около 7000 долларов за килограмм полезного груза. Большая часть этой стоимости приходится на одноразовую конструкцию, которая разрушается при пуске. Этот случай можно проиллюстрировать следующим примером: сколько будет стоить авиабилет в Париж, если после первого же полета самолет "Боинг-747" будет выбрасываться на свалку?
В 1991 г. работы по программе НАСП находились на втором этапе, продленном до сентября 1992 г. в соответствии с соглашением между НАСА и Министерством обороны. Решение о строительстве экспериментальных самолетов Экс-30 предполагалось принять в январе 1993 г.
Фирма "Пратт-Уитни" испытала отдельные элементы натурного двигателя при скорости 14 Махов и системы охлаждения - при скорости 20 Махов. Фирма "Рокетдайн" испытала полностью собранную модель ГПВРД при скорости 8 Махов и отдельные его элементы при скоростях до 25 Махов.

Программа НАСП вызвала большой интерес в странах Западной Европы и Японии.

Согласно сообщениям информационных агентств в мае 1992 г., Национальное управление США по аэронавтике и исследованию космического пространства (НАСА) не собирается, по крайней мере предстоящие 15 лет, работать над созданием нового американского космического корабля многоразового использования. Об этом заявил 17 мая в интервью программе телекомпании Эй-Би-Си новый директор НАСА Дэниел Голдин. Как передал корреспондент ИТАР-ТАСС, Д.Голдин подчеркнул, что это, главным образом, связано с ограниченностью бюджета космического ведомства США и высокой стоимостью полетов американских "Шаттлов".
По утверждению НАСА, в настоящее время каждый полет "Шаттла", с учетом всех расходов на его подготовку, обходится в 363 млн. долл. Однако специалисты считают эту цифру искусственно заниженной. "Если учитывать годовые расходы на осуществление всей программы "Спейс Шаттл", - указывают они, - то каждый из шести полетов, осуществленных в минувшем году, обошелся США в миллиард долларов. В нынешнем году планируется осуществить 8 запусков космических кораблей, в результате чего стоимость каждого полета должна снизиться примерно до 750 млн. долл.".
Директор НАСА также сообщил, что президент США Джордж Буш попросил его подготовить новую сбалансированную космическую программу, в которой космические исследования будут отвечать насущным земным нуждам. По словам Д.Голдина, этот план будет представлен на рассмотрение Конгресса.
Опыт эксплуатации многоразового транспортного космического корабля "Спейс Шаттл" в период 1981-1986 гг. показал, что по ряду причин не были достигнуты некоторые заявленные технико-экономические характеристики. Чрезмерно высокими оказались стоимость пуска и удельная стоимость выведения полезного груза, а также продолжительность межполетного обслуживания и подготовки комплекса к старту. Оценка удельной стоимости выведения полезного груза на низкую орбиту находится на порядок выше заявленного уровня. "Спейс Шаттл", по оценке некоторых американских специалистов, не может быть использован для обеспечения интенсивных транспортных перевозок между Землей и космосом, поэтому стоит вопрос о создании новых полностью многоразовых средств выведения - крылатых аэрокосмических летательных аппаратов, лишенных этих недостатков.
В противоположность программе НАСП, проект ССТО (SSTO) основывается как на уже имеющейся технологии, так и на технологии ближайшей перспективы, что делает возможным разработку одноступенчатого носителя с ракетной двигательной установкой. Целью проекта была демонстрация ССТО в суборбитальном полете в 1994 г.
Программе СОИ необходим недорогой и универсальный в применении аппарат, способный вывести груз массой 4500 кг и экипаж из двух человек на полярную орбиту. СОИ потребовала от фирм - контрактантов провести анализ трех концепций ССТО: аппарата с вертикальными стартом и посадкой, аппарата с вертикальным стартом и горизонтальной посадкой, а также аппарата с горизонтальными стартом и посадкой.
Хотя СОИ рассматривает в качестве основной задачи носителя ССТО выведение на околоземные орбиты космических перехватчиков "Бриллиант пеблз", она представила разработчикам широкие возможности по определению массы груза и других параметров, например, численности парка носителей, частоты запусков, стартового оборудования, численности обслуживающего персонала и стоимости. Дополнительные задачи, которые фирмы-разработчики анализировали применительно к концепции ССТО, - это доставка космонавтов на орбиту при создании орбитальных конструкций, транспортировку грузов и персонала на орбитальную станцию и обратно, обеспечение жизнедеятельности двух космонавтов на орбите в течение четырехсуточного полета, а также запуск межпланетных космических аппаратов. Однако основной задачей для носителя ССТО является демонстрация возможности его действия "подобно самолету".
На начальном этапе конкурса на разработку носителя ССТО, который был объявлен в 1990 г., принимали участие как отдельные фирмы - "Рокуэлл", "Боинг", "Дженерал дайнэмикс" и "Макдоннелл-Дуглас", так и группы фирм, организованные ими. В дальнейшем фирмы-победители должны были получить один или несколько двухлетних контрактов стоимостью около 50 млн. долл. каждый.
Специалисты фирмы "Макдоннелд-Дуглас" предложили аппарат баллистической схемы с вертикальными стартом и посадкой. Этот носитель может стартовать вертикально, входить в атмосферу с ориентацией носовой части по вектору скорости, а затем разворачиваться и вертикально садиться.
Другая конкурирующая фирма "Дженерал дайнэмикс" предпочла концепцию носителя с вертикальными стартом и посадкой, вход которого в атмосферу должен осуществляться с ориентацией хвостовой части по вектору скорости. Такое решение подразумевает использование укороченного центрального тела сопла двигателя в качестве теплового экрана.
Фирма "Рокуэлл интернэшнл" предложила крылатый аппарат с вертикальным стартом и горизонтальной посадкой, вход которого в атмосферу может осуществляться с ориентацией носовой части по вектору скорости. В этом отношении проект фирмы "Рокуэлл интернэшнл" напоминает один из вариантов, разработка которого предшествовала в начале 80-х годов работам по программе НАСП.
Фирма "Боинг" разработала проект с горизонтальными стартом и посадкой. Позже эта фирма отказалась от своей концепции и присоединилась к фирме "Рокуэлл", помогая ей разрабатывать принципы работы системы с вертикальным стартом и горизонтальной посадкой.
Как было объявлено 16 августа 1991 г., победителем стал проект аппарата "Дельта Клиппер" с вертикальными стартом и посадкой, предложенный фирмой "Макдоннелл-Дуглас". Компоновка напоминала сильно увеличенную капсулу "Меркурий". Программа была оригинальным замыслом инженера Макса Хантера, ответственного за разработку "Дельты" и телескопа "Хаббл".
Результаты параллельно проводимых работ в рамках программы НАСП и транспортной космической системы нового поколения, как оказалось, можно было использовать и при создании надежного и удобного в эксплуатации аппарата ССТО с ракетными двигателями. Прежде всего, здесь имеются в виду результаты, полученные в области создания новых материалов, разработки элементов конструкции, в частности, баков для криогенного топлива, различных вспомогательных систем, ракетных двигателей, а также успехи в области вычислительной аэродинамики и разработки автоматизированных средств проектирования, которыми фирмы, представившие свои проекты аппаратов ССТО, сочли возможным воспользоваться. Не отказываясь от применения предшествующих конструкторских разработок по аппарату ССТО, СОИ сконцентрировало свое внимание прежде всего на апробированных технических решениях, которыми можно воспользоваться при создании перспективного носителя баллистической схемы. В качестве ракетных двигателей рассматривались усовершенствованный вариант маршевого двигателя "Спейс Шаттла" и модификация РД-10, многие годы применяющегося на верхних ступенях "Центавра".
"Дельта Клиппер" - носитель, предложенный фирмой "Макдоннелл-Дуглас" - являлся, по словам сотрудников фирмы, во всех отношениях выдающимся аппаратом. Он не только имел возможность наземного обслуживания по типу самолета на авиалинии, но и обеспечивал безопасность прекращения полета в любой момент запуска. Даже в случае возникновения неполадок в двигательной установке аппарат мог легко возвратиться к месту старта или достигнуть орбиты, так как он имеет, во-первых, большой запас по тяговооруженности, и, во-вторых, двигательную установку, состоящую из нескольких двигателей, каждый из которые может быть безопасно выключен в случае возникновения неполадок. Этот космический аппарат, который может эксплуатироваться как с экипажем, так и без него, стартует вертикально с перегрузкой 1,3, что в 2,3 раза меньше величины перегрузки, которой подвергаются космонавты на борту "Спейс Шаттла". "Дельта Клиппер" способен пребывать в космосе в течение 7-14 суток, а при дозаправке на орбите может использоваться как межорбитальный аппарат для полета на геостационарную орбиту или для обслуживания трассы "околоземная орбита - лунная база - околоземная орбита".
Носитель фирмы "Макдоннелл-Дуглас" осуществляет вход носовой частью вперед, а затем разворачивается для вертикальной посадки. Он осуществляет посадку с помощью половины имеющихся двигателей, работающих при двадцатипроцентном уровне тяги, в то время как остальные двигатели остаются в резерве.
Фирма "Макдоннелл-Дуглас" при разработке аппарата "Дельта Клиппер" предполагала использовать научно-технический задел по программе одноразовой "Дельты" и самолета короткого взлета и посадки "Харриер". Космический аппарат способен совершать взлет и посадку в радиусе шести метров от намеченной точки.
Аппарат Хантера мог совершать взлет и посадку практически где угодно, не требуя для этого взлетно-посадочных полос. Однако для нормальной интенсивной и безопасной его эксплуатации все же требуется создать некоторые довольно необычные элементы наземной инфраструктуры, в частности, кольцевые бетонированные взлетно-посадочные полосы. Хотя, если бы у самолетов была такая же тяговооруженность, они могли бы обходиться без взлетных полос.
Программа быстро развивалась в течение последних шести месяцев 1991 г. После того, как на первом этапе программы были рассмотрены и оценены различные варианты одноступенчатых носителей, в августе 1991 г. руководители СОИ выделили контракт фирме "Макдоннелл-Дуглас" для проведения второго этапа программы, предусматривающего создание демонстрационного аппарата вертикальных старта и посадки, напоминающего сильно увеличенный в размерах обтекатель ракеты-носителя.
"Дельта Клиппер" позволял проводить высокоскоростные транспортные операции в любую точку земной поверхности с континентальной части США в течение менее, чем одного часа летного времени.
Хотя грузоподъемность носителя "Дельта Клиппер" примерно в 10 раз меньше грузоподъемности таких самолетов, как, например, аэробус "Боинг-747" существует большая потребность в максимально быстрой пересылке специальных грузов, и это обстоятельство способно компенсировать стоимость операции по транспортировке. В США рассчитывали, что удельная стоимость доставки груза с помощью носителя "Дельта Клиппер" уже в самом начале его эксплуатации могла быть снижена до 650 долларов за килограмм (в то время стоимость выведения грузов с помощью одноразовых ракет-носителей превышает 8000 долларов за килограмм).
Научно-исследовательский центр НАСА имени Лэнгли вел работы по созданию своего летательного аппарата ЭйчЛ-20 (HL-20) в качестве системы для доставки экипажа на орбиту ПЛС (PLS - Personnel Launch System). Исследовались два варианта аппаратов: с несущим корпусом и капсулы в форме двойного конуса. Сообщение о проводимых работах опубликовано в июле 1991 г. в журнале "Авиэйшн уик энд спейс текнолоджи".
Фирма "Боинг" разрабатывала проект создания пилотируемого воздушно-космического аппарата ТСТО (TSTO), использующего сверхзвуковой самолет-носитель в качестве первой ступени.
В отличие от немецкого проекта "Зенгер", скорость ТСТО на начальном участке будет существенно ниже, что приведет к уменьшению тепловой нагрузки и температуры первой ступени.
В качестве первой ступени рассматривается модифицированный вариант сверхзвукового пассажирского самолета (СПС). Вторая, орбитальная, ступень подвешивается под фюзеляжем, вписываясь в обводы самолета. Самолет будет иметь шесть турбореактивных двигателей. В хвостовой части должен быть установлен маршевый жидкостной ракетный двигатель ССМИ (SSME), чтобы создать дополнительную тягу на участке доразгона перед отделением второй ступени. Криогенные компоненты ракетного топлива будут находиться в фюзеляжных баках, а авиационные - в крыльевых.

Транспортная космическая система "Гермес" разрабатывается в рамках европейской широкомасштабной программы освоения космического пространства. Реализация этого проекта позволит Европе самостоятельно осуществлять пилотируемые космические полеты.
Корабль "Гермес" является составной частью европейской космической триады: "Ариан-5" - "Гермес" - "Колумб". Проект многоразовой транспортной системы "Гермес" был предложен Францией. Работы по обоснованию проекта начались в апреле 1988 г. Определилась общая компоновка корабля, проектно-массовые характеристики, проведена увязка основных параметров корабля и ракеты-носителя, определилась конструкция планера, аэродинамическая схема, теплозащита.
Орбитальный корабль "Гермес" обеспечивает реализацию ряда новых космических программ западно-европейских стран, выполняя операции доставки космонавтов с Земли на орбиту и обратно, транспортировки полезного груза и вспомогательных средств для работы в космосе, а также операции обслуживания на низкой орбите. Орбитальный корабль "Гермес" оптимизируется в основном для выполнения полетов двух типов: обслуживание лабораторного модуля "Колумбус" - прототипа европейской космической станции, находящегося в свободном полете, и герметического модуля "Колумбус" АРМ, входящего в состав международной космической станции. "Гермес" - автономный космический корабль с экипажем в составе двух человек, который может самостоятельно управлять всеми действиями корабля.
Выведение "Гермеса" на орбиту осуществляется ракетой-носителем "Ариан-5". В стартовом положении он размещается сверху носителя. Боковая дальность при возвращении корабля на Землю с орбиты должна составлять 1,5-2 тыс. км. Безопасность экипажа соответствует статистическому уровню, достигнутому для рискованной профессии летчика-испытателя. В критических ситуациях кабину корабля можно отстрелить от корабля и с помощью парашютов приземлить, обеспечив спасение экипажа. Полная масса орбитального корабля 21 т, сухой конструкции- - 13,9 т. Полезный груз может весить 3 т.
Первый этап работ по программе - обоснование проекта - начат в апреле 1988 г. на французских фирмах "Аэроспатиаль" и "Дассо". Второй этап должен завершиться летными испытаниями двух орбитальных кораблей. Первый корабль будет сначала использован в испытаниях на самолете-носителе (со сбросом его - для отработки захода на посадку и приземления). Эксплуатационные полеты "Гермеса" должны начаться в 1999 г. Расчетный срок службы составляет 15 лет, в течение которых каждый (планировалось изготовление двух) из них совершит 60 полетов. Затем на смену им придут более совершенные летательные аппараты, проекты которых разрабатываются в настоящее время западно-европейскими странами.

 

"Зенгер" представляет собой перспективную двухступенчатую транспортную космическую систему - базовый аппарат в национальной технологической программе Германии по гиперзвуковым летательным аппаратам. Практическая реализация программы "Зенгер" обеспечила бы западноевропейским странам сравнительно дешевый и независимый от США доступ в космос с возможностью горизонтального старта с обычных воздушных взлетно-посадочных полос в Европе и непосредственного выведения полезного груза на любую заданную орбиту. Применение в маршевых двигателях экологически "чистых" компонентов топлива - жидкого кислорода и жидкого водорода - исключает выброс в атмосферу вредных продуктов сгорания. При проектировании системы предполагалось использовать проверенные технические решения, что существенно снижает риск разработки. Существует реальная возможность унификации разгонной первой ступени, способной совершать гиперзвуковой крейсерский полет с перспективным гиперзвуковым пассажирским самолетом.
За период с 1984 по 1987 годы проектных исследований по программе "Зенгер", выполненных фирмами МББ (МВВ), "До


Поделиться с друзьями:

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.017 с.