Разделение IP адреса на сетевую и узловую части — КиберПедия 

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Разделение IP адреса на сетевую и узловую части

2017-06-09 1993
Разделение IP адреса на сетевую и узловую части 0.00 из 5.00 0 оценок
Заказать работу

Москва 2017

Для чего нужны IP адреса?

Для обмена данными в Интернете (между различными локальными сетями) узлу необходим IP-адрес. Это логический сетевой адрес конкретного узла. Для обмена данными с другими устройствами, подключенными к Интернету, необходим правильно настроенный, уникальный IP-адрес.

IP-адрес присваивается сетевому интерфейсу узла. Обычно это сетевая интерфейсная плата (NIC), установленная в устройстве. Примерами пользовательских устройств с сетевыми интерфейсами могут служить рабочие станции, серверы, сетевые принтеры и IP-телефоны. Иногда в серверах устанавливают несколько NIC, у каждой из которых есть свой IP-адрес. У интерфейсов маршрутизатора, обеспечивающего связь с сетью IP, также есть IP-адрес.

В каждом отправленном по сети пакете есть IP-адрес источника и назначения. Эта информация необходима сетевым устройствам для передачи информации по назначению и передачи источнику ответа.

——————————————

Структура IP адреса

IP-адрес представляет собой серию из 32 двоичных бит (единиц и нулей). Человеку прочесть двоичный IP-адрес очень сложно. Поэтому 32 бита группируются по четыре 8-битных байта, в так называемые октеты. Читать, записывать и запоминать IP-адреса в таком формате людям сложно. Чтобы облегчить понимание, каждый октет IP-адреса представлен в виде своего десятичного значения. Октеты разделяются десятичной точкой или запятой. Это называется точечно-десятичной нотацией.

При настройке IP-адрес узла вводится в виде десятичного числа с точками, например, 192.168.1.5. Вообразите, что вам пришлось бы вводить 32-битный двоичный эквивалент адреса — 11000000101010000000000100000101. Если ошибиться хотя бы в одном бите, получится другой адрес, и узел, возможно, не сможет работать в сети.

Структура 32-битного IP-адреса определяется межсетевым протоколом 4-ой версии (IPv4). На данный момент это один из самых распространенных в Интернете типов IP-адресов. По 32-битной схеме адресации можно создать более 4 миллиардов IP-адресов.

Получая IP-адрес, узел просматривает все 32 бита по мере поступления на сетевой адаптер. Напротив, людям приходится преобразовывать эти 32 бита в десятичные эквиваленты, то есть в четыре октета. Каждый октет состоит из 8 бит, каждый бит имеет значение. У четырех групп из 8 бит есть один и тот же набор значений. Значение крайнего правого бита в октете – 1, значения остальных, слева направо – 2, 4, 8, 16, 32, 64 и 128.

Чтобы определить значение октета, нужно сложить значения позиций, где присутствует двоичная единица.

· Нулевые позиции в сложении не участвуют.

· Если все 8 бит имеют значение 0, 00000000, то значение октета равно 0.

· Если все 8 бит имеют значение 1, 11111111, значение октета – 255 (128+64+32+16+8+4+2+1).

· Если значения 8 бит отличаются, например, 00100111, значение октета – 39 (32+4+2+1).

Таким образом, значение каждого из четырех октетов находится в диапазоне от 0 до 255.

Формат IP-адреса

——————————-

Классовая и бесклассовая адресация

Классовая IP адресация — это метод IP-адресации, который не позволяет рационально использовать ограниченный ресурс уникальных IP-адресов, т.к. не возможно использование различных масок подсетей. В классовом методе адресации используется фиксированная маска подсети, поэтому класс сети (см. выше) всегда можно идентифицировать по первым битам.

Бесклассовая IP адресация ( Classless Inter-Domain Routing — CIDR) — это метод IP-адресации, который позволяет рационально управлять пространством IP адресов. В бесклассовом методе адресации используются маски подсети переменной длины (variable length subnet maskVLSM).

Возможные значения маскок подсети при бесклассовом методе адресации (широко применяется в современных сетях):

 

 

Всего адресов битов Префикс Класс Десятичная маска
    /32   255.255.255.255
    /31   255.255.255.254
    /30   255.255.255.252
    /29   255.255.255.248
    /28   255.255.255.240
    /27   255.255.255.224
    /26   255.255.255.192
    /25   255.255.255.128
    /24 1C 255.255.255.0
    /23 2C 255.255.254.0
    /22 4C 255.255.252.0
    /21 8C 255.255.248.0
    /20 16C 255.255.240.0
    /19 32C 255.255.224.0
    /18 64C 255.255.192.0
    /17 128C 255.255.128.0
    /16 1B 255.255.0.0
    /15 2B 255.254.0.0
    /14 4B 255.252.0.0
    /13 8B 255.248.0.0
    /12 16B 255.240.0.0
    /11 32B 255.224.0.0
    /10 64B 255.192.0.0
    /9 128B 255.128.0.0
    /8 1A 255.0.0.0
    /7 2A 254.0.0.0
    /6 4A 252.0.0.0
    /5 8A 248.0.0.0
    /4 16A 240.0.0.0
    /3 32A 224.0.0.0
    /2 64A 192.0.0.0
    /1 128A 128.0.0.0
    /0 256A 0.0.0.0

Назначение маски подсети

Каждый IP-адрес состоит из двух частей. Как узлы определяют, где сетевая часть, а где адрес узла? Для этого используется маска подсети.

При настройке IP узлу присваивается не только IP-адрес, но и маска подсети. Как и IP-адрес, маска состоит из 32 бит. Она определяет, какая часть IP-адреса относится к сети, а какая – к узлу.

Маска сравнивается с IP-адресом побитно, слева направо. В маске подсети единицы соответствуют сетевой части, а нули — адресу узла.

Отправляя пакет, узел сравнивает маску подсети со своим IP-адресом и адресом назначения. Если биты сетевой части совпадают, значит, узлы источника и назначения находятся в одной и той же сети, и пакет доставляется локально. Если нет, отправляющий узел передает пакет на интерфейс локального маршрутизатора для отправки в другую сеть.

————————————

В домашних офисах и небольших компаниях чаще всего встречаются следующие маски подсети: 255.0.0.0 (8 бит), 255.255.0.0 (16 бит) и 255.255.255.0 (24 бита). В маске подсети 255.255.255.0 (десятичный вариант), или 11111111.11111111.1111111.00000000 (двоичный вариант) 24 бита идентифицируют сеть, а 8 — узлы в сети.

Чтобы вычислить количество возможных сетевых узлов, нужно взять число два (2) в степени количества отведенных для них бит (2 ^ 8 = 256). Из полученного результата необходимо вычесть 2 (256-2). Дело в том, что состоящая из одних единиц (1) отведенная узлам часть IP-адреса предназначена для адреса широковещательной рассылки и не может принадлежать одному узлу. Часть, состоящая только из нулей, является идентификатором сети и тоже не может быть присвоена конкретному узлу. Возвести число 2 в степень без труда можно с помощью калькулятора, который есть в любой операционной системе Windows.

Иначе допустимое количество узлов можно определить, сложив значения доступных бит (128+64+32+16+8+4+2+1 = 255). Из полученного значения необходимо вычесть 1 (255-1 = 254), поскольку значение всех бит отведенной для узлов части не может равняться 1. 2 вычитать не нужно, поскольку сумма нулей равна нулю и в сложении не участвует.

В 16-битной маске для адресов узлов отводится 16 бит (два октета), и в одном из них все значения могут быть равны 1 (255). Это может быть и адрес широковещательной рассылки, но если другой октет не состоит из одних единиц, адрес можно использовать для узла. Не забывайте, что узел проверяет значения всех бит, а не значения одного октета.

Адреса подсетей

Взаимодействие IP-адреса и маски подсети

Одноадресная рассылка

Адрес одноадресной рассылки чаще всего встречается в сети IP. Пакет с одноадресным назначением предназначен конкретному узлу. Пример: узел с IP-адресом 192.168.1.5 (источник) запрашивает веб-страницу с сервера с IP-адресом 192.168.1.200 (адресат).

Для отправки и приема одноадресного пакета в заголовке IP-пакета должен указываться IP-адрес назначения. Кроме того, в заголовке кадра Ethernet должен быть MAC-адрес назначения. IP-адрес и MAC-адрес — это данные для доставки пакета одному узлу.

Одноадресная рассылка

Широковещательная рассылка

В пакете широковещательной рассылки содержится IP-адрес назначения, в узловой части которого присутствуют только единицы (1). Это означает, что пакет получат и обработают все узлы в локальной сети (домене широковещательной рассылки). Широковещательные рассылки предусмотрены во многих сетевых протоколах, например ARP и DHCP.

В сети класса C 192.168.1.0 с маской подсети по умолчанию 255.255.255.0 используется адрес широковещательной рассылки 192.168.1.255. Узловая часть – 255 или двоичное 11111111 (все единицы).

В сети класса B 172.16.0.0 с маской подсети по умолчанию 255.255.0.0 используется адрес широковещательной рассылки 172.16.255.255.

В сети класса A 10.0.0.0 с маской подсети по умолчанию 255.0.0.0 используется адрес широковещательной рассылки 10.255.255.255.

Для сетевого IP-адреса широковещательной рассылки нужен соответствующий MAC-адрес в кадре Ethernet. В сетях Ethernet используется MAC-адрес широковещательной рассылки из 48 единиц, который в шестнадцатеричном формате выглядит как FF-FF-FF-FF-FF-FF.

Широковещательная рассылка

Многоадресная рассылка

Адреса многоадресных рассылок позволяют исходному устройству рассылать пакет группе устройств.

Устройства, относящиеся к многоадресной группе, получают ее IP-адрес. Диапазон таких адресов — от 224.0.0.0 до 239.255.255.255. Поскольку адреса многоадресных рассылок соответствуют группам адресов (которые иногда называются группами узлов), они используются только как адресаты пакета. У источника всегда одноадресный адрес.

Адреса многоадресных рассылок используются, например, в дистанционных играх, в которых участвует несколько человек из разных мест. Другой пример — это дистанционное обучение в режиме видеоконференции, где несколько учащихся подключаются к одному и тому же курсу.

Как и одноадресным или широковещательным адресам, IP-адресам многоадресной рассылки нужен соответствующий MAC-адрес, позволяющий доставлять кадры в локальной сети. MAC-адрес многоадресной рассылки — это особое значение, которое в шестнадцатеричном формате начинается с 01-00-5E. Нижние 23 бита IP-адреса многоадресной группы преобразуются в остальные 6 шестнадцатеричных символов адреса Ethernet. Пример (см. рисунок) — шестнадцатеричное значение 01-00-5E-0F-64-C5. Каждому шестнадцатеричному символу соответствует 4 двоичных бита.

Многоадресная рассылка

Москва 2017

Для чего нужны IP адреса?

Для обмена данными в Интернете (между различными локальными сетями) узлу необходим IP-адрес. Это логический сетевой адрес конкретного узла. Для обмена данными с другими устройствами, подключенными к Интернету, необходим правильно настроенный, уникальный IP-адрес.

IP-адрес присваивается сетевому интерфейсу узла. Обычно это сетевая интерфейсная плата (NIC), установленная в устройстве. Примерами пользовательских устройств с сетевыми интерфейсами могут служить рабочие станции, серверы, сетевые принтеры и IP-телефоны. Иногда в серверах устанавливают несколько NIC, у каждой из которых есть свой IP-адрес. У интерфейсов маршрутизатора, обеспечивающего связь с сетью IP, также есть IP-адрес.

В каждом отправленном по сети пакете есть IP-адрес источника и назначения. Эта информация необходима сетевым устройствам для передачи информации по назначению и передачи источнику ответа.

——————————————

Структура IP адреса

IP-адрес представляет собой серию из 32 двоичных бит (единиц и нулей). Человеку прочесть двоичный IP-адрес очень сложно. Поэтому 32 бита группируются по четыре 8-битных байта, в так называемые октеты. Читать, записывать и запоминать IP-адреса в таком формате людям сложно. Чтобы облегчить понимание, каждый октет IP-адреса представлен в виде своего десятичного значения. Октеты разделяются десятичной точкой или запятой. Это называется точечно-десятичной нотацией.

При настройке IP-адрес узла вводится в виде десятичного числа с точками, например, 192.168.1.5. Вообразите, что вам пришлось бы вводить 32-битный двоичный эквивалент адреса — 11000000101010000000000100000101. Если ошибиться хотя бы в одном бите, получится другой адрес, и узел, возможно, не сможет работать в сети.

Структура 32-битного IP-адреса определяется межсетевым протоколом 4-ой версии (IPv4). На данный момент это один из самых распространенных в Интернете типов IP-адресов. По 32-битной схеме адресации можно создать более 4 миллиардов IP-адресов.

Получая IP-адрес, узел просматривает все 32 бита по мере поступления на сетевой адаптер. Напротив, людям приходится преобразовывать эти 32 бита в десятичные эквиваленты, то есть в четыре октета. Каждый октет состоит из 8 бит, каждый бит имеет значение. У четырех групп из 8 бит есть один и тот же набор значений. Значение крайнего правого бита в октете – 1, значения остальных, слева направо – 2, 4, 8, 16, 32, 64 и 128.

Чтобы определить значение октета, нужно сложить значения позиций, где присутствует двоичная единица.

· Нулевые позиции в сложении не участвуют.

· Если все 8 бит имеют значение 0, 00000000, то значение октета равно 0.

· Если все 8 бит имеют значение 1, 11111111, значение октета – 255 (128+64+32+16+8+4+2+1).

· Если значения 8 бит отличаются, например, 00100111, значение октета – 39 (32+4+2+1).

Таким образом, значение каждого из четырех октетов находится в диапазоне от 0 до 255.

Формат IP-адреса

——————————-

Разделение IP адреса на сетевую и узловую части

Логический 32-битный IP-адрес представляет собой иерархическую систему и состоит из двух частей. Первая идентифицирует сеть, вторая — узел в сети. Обе части являются обязательными.

Например, если IP-адрес узла – 192.168.18.57, то первые три октета (192.168.18) представляют собой сетевую часть адреса, а последний октет (.57) является идентификатором узла. Такая система называется иерархической адресацией, поскольку сетевая часть идентифицирует сеть, в которой находятся все уникальные адреса узлов. Маршрутизаторам нужно знать только путь к каждой сети, а не расположение отдельных узлов.

Иерархическая структура IP-адресов

Другой пример иерархической сети – это телефонная сеть. В телефонном номере код страны, региона и станции составляют адрес сети, а оставшиеся цифры — локальный номер телефона.

При IP-адресации в одной физической сети могут существовать несколько логических сетей, если сетевая часть адреса их узла отличается. Пример. Три узла в одной физической локальной сети имеют одинаковую сетевую часть в своем IP-адресе (192.168.50), а три других узла — другую сетевую часть (192.168.70). Три узла с одной сетевой частью в своих IP-адресах имеют возможность обмениваться данными друг с другом, но не могут обмениваться информацией с другими узлами без использования маршрутизации. В данном случае имеем одну физическую сеть и две логические IP-сети.

Сетевая и узловая части IP адреса


Поделиться с друзьями:

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.036 с.