Дофамин и другие нейромедиаторы — КиберПедия


Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Дофамин и другие нейромедиаторы



Дофаминергические подсистемы находятся под контролем или сами контролируют норадренергические, серотонинергические, ГАМК-ергические, холинергические,мелатонинергические, глутаматергические, пептидергические системы. ГАМК-ергические и серотонинергические системы находятся в антагонистических отношениях с дофаминергической системой, а норадренергическая и дофаминергическая системы в различных функциональных состояниях функционируют однонаправленно: как в период бодрствования, так и в период сна. Взаимодействия дофаминергической и холинергической системы сложны, в условиях патологических процессов активность этих систем неоднозначна[21].

Гормон

Дофамин обладает рядом физиологических свойств, характерных для адренергических веществ.

Дофамин вызывает повышение сопротивления периферических сосудов (менее сильное, чем под влиянием норадреналина). Он повышает систолическое артериальное давление в результате стимуляции α-адренорецепторов. Также дофамин увеличивает силу сердечных сокращений в результате стимуляции β-адренорецепторов. Увеличивается сердечный выброс. Частота сердечных сокращений увеличивается, но не так сильно, как под влиянием адреналина.

Потребность миокарда в кислороде под влиянием дофамина повышается, однако в результате увеличения коронарного кровотока обеспечивается повышенная доставка кислорода.

В результате специфического связывания с дофаминовыми рецепторами почек дофамин уменьшает сопротивление почечных сосудов, увеличивает в них кровоток и почечную фильтрацию. Наряду с этим повышается натрийурез. Происходит также расширение мезентериальных сосудов. Этим действием на почечные и мезентериальные сосуды дофамин отличается от других катехоламинов (норадреналина, адреналина и др.). Однако в больших концентрациях дофамин может вызывать сужение почечных сосудов.

Дофамин ингибирует также синтез альдостерона в коре надпочечников, понижает секрецию ренина почками, повышает секрецию простагландинов тканью почек.

Дофамин тормозит перистальтику желудка и кишечника, вызывает расслабление нижнего пищеводного сфинктера и усиливает желудочно-пищеводный и дуодено-желудочный рефлюкс. В ЦНС дофамин стимулирует хеморецепторы триггерной зоны и рвотного центра и тем самым принимает участие в осуществлении акта рвоты.

Через гематоэнцефалический барьер дофамин мало проникает, и повышение уровня дофамина в плазме крови оказывает малое влияние на функции ЦНС, за исключением действия на находящиеся вне гематоэнцефалического барьера участки, такие как триггерная зона.



Повышение уровня дофамина в плазме крови происходит при шоке, травмах, ожогах, кровопотерях, стрессовых состояниях, при различных болевых синдромах, тревоге, страхе, стрессе. Дофамин играет роль в адаптации организма к стрессовым ситуациям, травмам, кровопотерям и др.

Также уровень дофамина в крови повышается при ухудшении кровоснабжения почек или при повышенном содержании ионов натрия, а также ангиотензина илиальдостерона в плазме крови. По-видимому, это происходит вследствие повышения синтеза дофамина из ДОФА в ткани почек при их ишемии или при воздействииангиотензина и альдостерона. Вероятно, этот физиологический механизм служит для коррекции ишемии почек и для противодействия гиперальдостеронемии и гипернатриемии.

 

Адипонектин (также называемый GBP-28, apM1, AdipoQ и Acrp30) — гормон, который синтезируется и секретируется белой жировой тканью, преимущественно адипоцитами висцеральной области (а также плацентой во время беременности[1]), находится в достаточном количестве в крови — около 0,01% общего белка плазмы c общей концентрацией около 5-10 мкг/мл. Его секреция стимулируется инсулином. У человека этот белок кодируется геномADIPOQ[2]. Адипонектин участвует в регуляции уровня глюкозы и расщепления жирных кислот.

Структура

Адипонектина — полипептид из 244 аминокислот. В его структуре есть четыре различных региона. Первый представляет собой короткую сигнальную последовательность, предназначенную для секреции гормона; затем короткий регион, который варьируется между видами; третий — область из 65 аминокислот, схожая с коллагеновымибелками; последний представляет собой глобулярный домен. В целом этот ген схож с (с1q системы комплемента). Однако, когда была определена 3-мерная структура глобулярных региона, поразительное сходство обнаружилось сTNFa, несмотря на не родственные белковые последовательности[3].



Функции

Концентрация адипонектина в плазме крови имеет чёткую отрицательную корреляцию с индексом атерогенности, уровнем ТГ и Апо-В, а также положительную корреляцию с ЛПВП и Апо-А-1. Этот белок регулирует энергетический гомеостаз и оказывает противовоспалительный и антиатерогенный эффекты, подавляя адгезию моноцитов к эндотелиальным клеткам сосудов и оказывая тормозящее влияние на обусловленную ростовым фактором пролиферацию гладкомышечных клеток в сосудистой стенке. Уровень адипонектина снижается при ожирении, в отличие от других адипокинов, которые при этом повышаются, включая лептин, резистин и TNF-α. Развитие сахарного диабета (СД) 2 типа может быть связано с нарушением регуляции секреции этого гормона. Показано, что снижение экспрессии адипонектина коррелирует с инсулинорезистентностью. Введение рекомбинантного адипонектина угнетает синтез глюкозы в печени. Полагают, что адипонектин выполняет защитную функцию против гипергликемии, инсулинорезистентности и атеросклероза (АС), модулирует чувствительность к инсулину и гомеостаз глюкозы.

Низкое содержание адипонектина в сыворотке является независимым фактором прогноза развития СД 2 типа. Чем выше уровень адипонектина в крови, тем ниже риск развития сахарного диабета 2 типа, независимо от индекса массы тела (ИМТ), расы и пола.

Показано, что сывороточная концентрация адипонектина обратно коррелирует с плотностью костной ткани и массой висцерального жира. Предполагают, что адипонектин может играть роль в защитном действии висцерального жира на плотность костной ткани. Адипонектин также ингибирует воспалительные процессы, связанные с АС, подавляя экспрессию цитокинов и молекул адгезии в клетках сосудистого эндотелия и макрофагах соответственно. Чем выше содержание гормона, секретируемого жировыми клетками, тем меньше риск развития инфаркта миокарда. Адипонектин противодействует накоплению жиров в стенках артерий, уменьшая вероятность образования тромбов, которые могут приводить к инфаркту миокарда.

В настоящее время адипонектин является одним из наиболее достоверных биохимических предикторов сахарногодиабета 2 типа.

 

Гонадотропные гормоны, или гонадотропины — подкласс тропных гормонов передней доли гипофиза и плаценты, физиологической функцией которых является регуляция работы половых желёз.

В настоящее время к гонадотропинам относят два гормона передней доли гипофиза: фолликулостимулирующий гормон (ФСГ) и лютеинизирующий гормон (ЛГ), а также особый гормон плаценты — хорионический гонадотропин.

Ранее, в самом начале изучения тропных функций гипофиза, считалось, что гонадотропных гормонов гипофиза существует три: фолликулостимулирующий, лютеинизирующий и лютеотропный (поддерживающий существование и функционирование жёлтого тела после лютеинизации лопнувшего фолликула). Позже выяснилось, что гормон, который тогда называли «лютеотропным», на самом деле физиологически в значительно большей степени является лактотропным, чем лютеотропным. С этого момента его стали называть пролактином или лактотропным гормоном и отделять от гонадотропинов, к которым теперь относят только ЛГ и ФСГ.

ЛГ же стали называть, наряду с «лютеинизирующим», также «лютеотропным» гормоном, лютеотропином, лютропином.

 

 

Гормон роста (соматотропный гормон, СТГ, соматотропин, соматропин) — один из гормонов передней доли гипофиза. Относится к семейству полипептидных гормонов, в которое входят также пролактин и плацентарный лактоген.

Гены гормона роста и его изоформы

Пять генов гормона роста расположены в соседних локусах хромосомы 17, имеют высокую степень гомологии и, видимо, возникли в результате дупликации предкового гена. Два из них дают две основные изоформы гормона роста, одна из которых синтезируется в основном в гипофизе, а другая — в клетках синцитиотрофобласта плаценты. Альтернативный сплайсинг увеличивает число изоформ и предполагает возможность их специализации в воздействии на разные ткани. В крови присутствуют несколько изоформ, основная из которых содержит 191 аминокислоту и имеет молекулярную массу 22124 Да.

Действие гормона роста на органы и ткани

Гормоном роста соматотропин называют за то, что у детей и подростков, а также молодых людей с ещё не закрывшимися зонами роста в костях он вызывает выраженное ускорение линейного (в длину) роста, в основном за счет роста длинных трубчатых костей конечностей. Соматотропин оказывает мощное анаболическое и анти-катаболическое действие, усиливает синтез белка и тормозит его распад, а также способствует снижению отложения подкожного жира, усилению сгорания жира и увеличению соотношения мышечной массы к жировой. Кроме того, соматотропин принимает участие в регуляции углеводного обмена — он вызывает выраженное повышение уровня глюкозы в крови и является одним из контринсулярных гормонов, антагонистов инсулина по действию на углеводный обмен. Описано также его действие на островковые клетки поджелудочной железы, иммуностимулирующий эффект, усиление поглощения кальция костной тканью и др. Многие эффекты гормон роста вызывает непосредственно, но значительная часть его эффектов опосредуетсяинсулиноподобными факторами роста, главным образом IGF-1 (ранее его называли соматомедином С), который вырабатывается под действием гормона роста в печени и стимулирует рост большинства внутренних органов. Дополнительные количества IGF-1 (англ. Insulin–like growth factor) синтезируются в тканях-мишенях.

Рецептор гормона роста и механизм его действия

Рецептор гормона роста — трансмембранный белок, относящийся к суперсемейству рецепторов с тирозинкиназной активностью. Согласно данным большинства исследователей при взаимодействии с одной молекулой гормона происходит объединение двух молекул рецептора (димеризация), после чего рецептор активируется, и его внутриклеточный домен фосфорилирует сам рецептор и основной белок-мишень — янус-киназу (JAK-2). Дальнейшая передача сигнала идет несколькими путями — через белки STAT янус-киназа активирует транскрипцию ряда генов, через белок IRS (субстрат инсулинового рецептора) осуществляется влияние на транспорт глюкозы в клетки и др. JAK-2 может также непосредственно активировать другие рецепторы, например, рецептор эпидермального фактора роста, чем, видимо, объясняется митогенное действие гормона роста.

Секреция гормона роста

Суточные ритмы секреции

Секреция гормона роста, как и многих других гормонов, происходит периодически и имеет несколько пиков в течение суток (обычно пик секреции наступает через каждые 3-5 часов). Наиболее высокий и предсказуемый пик наблюдается ночью, примерно через час-два после засыпания.






Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...





© cyberpedia.su 2017-2020 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав

0.01 с.