Универсальный коллекторный электродвигатель. — КиберПедия 

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Универсальный коллекторный электродвигатель.



работает как от сети постоянного тока, так и от сети переменного тока. Возможность работы коллекторного двигателя после­довательного возбуждения от сети переменного тока объясняется тем, что при изменении полярности подводи­мого напряжения изменяются направления токов в обмотке якоря и в обмотке возбуждения. При этом изменение полярности полюсов статора практически совпадает с изменением направления тока в обмотке якоря. В итоге направление

электромагнитного вращающего момента не изменяется: М=CмIaФ=см(-Iа)(-Ф). В качестве универсального используют двигатель последовательного возбуждения, у которого ток якоря является и током возбуждения, что обеспечивает почти одновременное изменение направления тока в обмотке якоря Iа и магнитного потока возбуждения Ф при пере­ходе от положительного полупериода переменного напряжения сети к отрицательному. Если двигатель подключить к сети синусоидального переменного тока, то ток якоря ia и магнитный поток Ф будут изменяться по синусоидальному закону: i=Imax*sin(w1t); Ф=Фmax*sin(w1t-d), где d—угол сдвига фаз между током возбуждения и магнитным потоком, обусловленный магнитными потеря­ми в двигателе. Используя это выражения, получим формулу эл-маг момента коллекторного двигателя после­довательного возбуждения, включенного в сеть синусои­дального переменного тока, Нм: М'=Cм*Imax*Фmax* sinw1tsin(w1t-δ). При работе универсального коллекторного двигателя от сети переменного тока перемагничиванию подверга­ется вся магнитная система двигателя, включая стани­ну и полюса. Это приводит к увеличению магнитных потерь, для уменьшения которых станину и полюса статора приходится делать шихтованными. Коэффициент полезного действия универсального дви­гателя при его работе от сети переменного тока более низкий, чем при его работе от сети постоянного тока. Другой недостаток универсального двигателя — тяжелые условия коммутации, вызывающие интенсивное искрение на коллекторе при включении двигателя в сеть пере­менного тока. Этот недостаток объясняется наличием трансформаторной связи между обмотками возбуждения и якоря, что ведет к наведению в коммутируемых сек­циях трансформаторной ЭДС, ухудшающей процесс ком­мутации в двигателе. Частота вращения универсальных двигателей регу­лируется так же, как и в двигателях постоянного тока последовательного возбуждения. Наличие щеточно-коллекторного узла является причи­ной ряда недостатков универсальных коллекторных дви­гателей, особенно при их работе на переменном токе (искрение на коллекторе, радиопомехи, повышенный шум, невысокая надежность). Однако эти двигатели по сравнению с асинхронными и синхронными при часто­те питающего напряжения f1=50 Гц позволяют полу­чать частоту вращения до 10000 об/мин и более (наи­большая синхронная частота вращения при f1=50 Гц равна 3000 об/мин). Bзготавливаются не­сколько серий универсальных коллекторных двигателей например УВ, УЛ, МУН.



2. Электрические контакты. Износостойкость контактов, устройства дугогашения.

Соединение двух (или более) токоведущих элементов электрической цепи называют электрическим контактом. Различают подвижные и неподвижные контакты. При наличии неподвижных контактов токоведущие эл-ты эл. цепи в процессе работы не перемещаются друг относительно друга. В случае подвижных контактов (рычажные , скользящие контакты,) эл-ты цепи в процессе работы замыкаются и размыкаются. Важной характеристикой контактов явл. их электрическое сопротивление. Оно определяется в основном переходным сопрот., зависящим от площади контактирования. Для ум. переход. сопрот. стремятся увеличить силу прижатия контактов. Наличие тока в цепи контактов вызывает их нагрев, который пропорц. переход. сопрот. Т.е. по мере увеличения номинального тока коммутирующего аппарата необходимо повышать контактное нажатие. Кроме того , с ростом тока необходимо увеличить пов-ть охлаждения, т.е. размеры контактирующтх поверхностей. Размыкание электрической цепи при значительных токах и напряжениях, как правило сопровождается электрич. разрядом между расход. контактами. При расхождении контактов резко возрастает переходное сопротивление контакта и плотность тока в последней площадке контактирования. Контакты разогреваются до расплавления и образуется контактный перешеек из расплавленного металла, который при дальнейшем расхождении контактов рвется, и происходит испарение металла контактов.



Воздушный промежуток между контактами ионизируется и становится проводящим, в нем под действием высокого напряжения появляется электрическая дуга. Электрич. дуга способствует разрушению контактов и снижает быстродействие коммутационного аппарата. Наиболее эффективным способом гашения электрической дуги является ее охлаждение за счет перемещения в воздухе, соприкосновения с изоляционными стенками спец. Камер, которые отбирают теплоту дуги. В современных аппаратах широкое применение получили дугогасительные камеры с узкой щелью и магнитным дутьем. Дугу можно рассматривать как проводник с током; если его поместить в магнитное поле, то возникнет сила, которая вызовет перемещение дуги. При своем движении дуга обдувается воздухом; попадая в узкую щель между двумя изоляционными пластинами, она деформируется и в следствии повышения давления в щели камеры гаснет.

 

 

Билет №6

1.Генератор постоянного тока независимого и параллельного возбуждения. Характеристики.

В генераторе такого типа то возбуждения Iв не зависит от тока якоря Ia, который равен току нагрузки Iн. Ток Iв определяется только положением регулировочного реостата Rрв включенного в цепь обмотки возбуждения Iв=Uв/(Rв+ Rрв), где Uв – напряжение источника питания, Rв- сопротивление обмотки возбуждения. Основными хар-ми определ-ми св-ва ГПТ яв-ся хар-ки: ХХ,

внешняя, регулировочная и нагрузочная. Хар-ой хол хода наз зависимость U0=f(Iв) при Iн=0 и n=const. Рис1 При холостом ходе

когда цепь нагрузки разомкнута, напряжение U0 на зажимах обмотки равно ЭДС. Частота вращения якоря n поддерживается неизменной и напряжение при холостом ходе зависит только от магнитного потока Ф. Расхождение ветвей объясн-ся наличием гистерезиса в магнитопроводе

машины. Внешней хар-ой наз зависимость U=f(Iн) при n=const, Iв=const. В режиме нагрузки напряжение генератора U=E-IaΣRa,

Σra- сумма сопротивлений всех обмоток, включенных последовательно в цепь якоря. С увелич-ем нагрузки на уменьшение напряжения влияют: 1) падение напр-я во внутреннем сопротивл-ии Σra машины. 2) уменьшение ЭДС Е в резулт. размаг. Действия реакции якоря. Рис2

Регулировочной хар-ой наз зависимость Iв=f(Iн) при U=const, n=const. Она показывает каким образом следует регулировать ток возбуждения чтобы поддерживать

постоянным напряжение генератора при изменении нагрузки рис3. Нагрузочной харк-ой назыв. зависимость U=f(Iв) при n=const, Iн=const. Если Iн=Ia то кривая 2. рис4

Генератор постоянного тока парал..возбуждения. Рис 5 в ГПВ ОВ присоединена через регулиров. Реостат параллельно нагрузке. ХХХ U=F(iв) при I=0 и при n=const при параллельном возбуждении м.б снята только в одном квадранте путем регулирования iв с помощью регулировочного реостата.В этом случае используется принцип самовозбуждения di/dt=(e-iвΣRв)/Lв. Из него следует что для самовозбуждения генератора необходимо выполнение определ условий:1) процесс самовозбуждения может начаться только в том случае если в нач момент (iв=0) в обмотке якоря индуцируется некоторая начал ЭДС.2) при прохождении тока iв по обмотке возбуждения ее МДС Fв должна быть направлена согласно МДС остаточного магнетизма Fост.

Внешняя характеристика U=F(I) ГПВ снимается при

Rв=const и n=const, те без регулирования вцепи возбуждения, при естественных условиях работы.

Характерной особенностью ВХ ГПВ является то, что при некотором макс.значении тока (точка А) она делает петлю и приходит в точку Б на оси абсцисс, которая соответствует установившемуся току КЗ. Ток Ikуст отн-но мал и определяется остаточным магнитным потоком. Такой ход хар-ки объясняется следующим. При увеличении тока I на

пряжение U падает сначало медленно, а затем быстрее, тк с уменьшением U и iв падает поток Ф, магн.цепь становится менее насыщенной и малое уменьшение iв будут вызывать все большее уменьшение Ф и U. Точка А соответствует переходу ххх с нижней части колена на прямолинейный ненасыщеный участок. Начиная с т.А дальнейшее уменьшение сопротивления нагрузки не только не вызывает увеличения I, а на оборот, происходит уменьшение I, тк U падает быстрее, чем Rн.

2. Потери мощности и КПД трансформатора. Энергетическая диаграмма.под нагрузкой часть активной мощности р1, поступающей в первичную обмотку из сети, рассеивается в трансформаторе на по­крытие потерь. В итоге активная мощность Р2, поступаю­щая в нагрузку, оказывается меньше мощности Р1 на величину суммарных потерь в трансформаторе суммаР: Р1=Р2+суммаР. В трансформаторе есть два вида потерь — магнитные и электрические. Магнитные потери Рм в стальном магнитопроводе, по которому замыкается переменный магнитный поток Фmax, складываются из потерь на гистерезис Рг вихревые токи Рвх Рм=Рг+Рвх. Магнитные потери прямо пропорциональны массе магнитопровода и квадрату магнитной индукции в нем. Они также зависят от свойств стали, из которой изготовлен магнитопровод. Уменьшению потерь на гистерезис спо­собствует изготовление магнитопровода из ферромагнит­ных материалов (электротехнической стали или сплава типа пермаллой). Обладающих небольшой коэрцитивной силой (узкой петлей гистерезиса). Для уменьшения по­терь на вихревые токи магнитопровод изготавливают шихтованным (из тонких стальных пластин, изолирован­ных друг от друга тонким слоем лака или оксидной плен­кой) или витым из стальной ленты. Магнитные потери зависят также и от частоты переменного тока: с увели­чением частоты f магнитные потери возрастают за счет потерь на гистерезис Рг и вихревые токи Рвх. Ранее было установлено, что основной магнитный по­ток в магнитопроводе не зависит от нагрузки трансфор­матора, поэтому при изменениях нагрузки магнитные потери остаются практически неизменными. Электрические потери — это потери в обмотках транс форматора, обусловленные нагревом обмоток токами, проходящими по ним. Рэ=Рэ1+Рэ2=I12*r1+I22*r2. Электрические потери являются переменными, так как их величина пропорциональна квадрату токов в обмот­ках. Электрические потери при любом токе нагрузки I2 трансформатора, Вт, Рэ=Рэном*b2 , где Рэном — электрические потери при номинальном токе нагрузки; b=I2/I2ном — коэффициент нагрузки, характе­ризует степень нагрузки трансформатора. Коэффициент полезного действия (КПД) трансфор­матора представляет собой отношение активных мощно­стей на его выходе Р2 и входе P1: КПД=P2/P1 = P2/(P2+Pм+Pэ)- Активная мощность на выходе трансформатора, Вт, Р2=Sном*bcosj2, где Sном- номинальная мощность трансформатора; cosj2 - коэффициент мощности нагрузки. Получим кпд=Sномbcosj2/( Sномbcosj2+Pм+Рэномb^2) Таким образом, КПД трансформаторов зависит от ве­тчины нагрузки р и от ее характера cosj2. Графически та зависимость представлена на рис. 1

зависимость η=f(b) при cosφ2=1 –(график1), cosφ2<1(график2).

Максимальное значение кпд соответствует нагрузке b' при которой электрические потери равны магнитным (Рэ.номb'^2 =Рм) Номинальное значение КПД тем выше, чем больше номинальная мощность трансформатора Sном. У

более мощных трансформаторов КПД может достигать Т1„ом = 0,98 - 0,99. Все эти потери мощности и энергии в трансформаторе наглядно принято изобажать в виде энергетической диаграммы

 
 

 


КПД тр=>η=P2/P1, с учетом потерь η=1-((Рэ1+Рс+Рэ2)/(Р2+Зэ1+Рэ2))Однако КПД для трансф значит выше чем у других электр преобраз. Поэтому определ коэф-т полезного дейсьвия с достаточной точностью через отношение мощностей практически невозможно.

 

 

Билет№7






Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...



© cyberpedia.su 2017 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав

0.01 с.