В дальнейшем все формулы и уравнения будут даны в основном для единицы массы вещества. — КиберПедия 

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

В дальнейшем все формулы и уравнения будут даны в основном для единицы массы вещества.



 

1-й закон т/д указывает, что для получения полезной работы (L) в непрерывно действующем тепловом двигателе надо подводить (затрачивать) теплоту (Q).

¦"Двигатель, постоянно прозводящий работу и не потребляющий ¦никакой энергии называется вечным двигателем I рода."

Из этого можно высказать следующее определение 1-го закона термодинамики:

¦" Вечный двигатель первого рода невозможен".

 

Теплоемкость газа.

Истинная теплоемкость рабочего тела определяется отношением количества подведенной (отведенной) к рабочему телу теплоты в данном т/д процессе к вызванному этим изменениям температуры тела.

С = dQ / dT , [Дж /К] ; (2.3)

Теплоемкость зависит от внешних условий или характера процесса, при котором происходит подвод или отвод теплоты.

Различают следующие удельные теплоемкости:

массовую – с = С / m , [Дж/кг]; (2.4)

молярную - сμ = С / ν , [Дж/моль] , (2.5)

 

где ν - количества вещества [моль] ;

объемную - с/ = С / V = с·ρ , [Дж/м3] , (2.6)

где - ρ = m / V - плотность вещества.

Связь между этими теплоемкостями:

с = с/ · υ = сμ / μ ,

 

где - υ = V/m - удельный объем вещества, [м3/кг];

μ = m /ν – молярная (молекулярная) масса, [кг/моль].

Теплоемкость газов в большой степени зависит от тех условий, при которых происходит процесс их нагревания или охлаждения. Различают теплоемкости при постоянном давлении (изобарный) и при постоянном объеме (изохорный).

Таким образом, различают следующие удельные теплоемкости:

ср , сv – массовые изобарные и изохорные теплоемкости;

с , с – молярные изобарные и изохорные теплоемкости;

с/p , с/v – объемные изобарные и изохорные теплоемкости.

Между изобарными и изохорными теплоемкостями существует следующая зависимость:

ср - сv = R - уравнение Майера; (2.7)

с - с = Rμ . (2.8)

Теплоемкость зависит от температуры, которые даются в справочных литературах в виде таблицы как средние теплоемкости в интервале температур от 0 до tх. Для определения средней теплоемкости в интервале температур от t1 до t2 можно использовать следующую формулу:

с|t2t1 = (с|t20 t2 - с|t10 t1) / (t2 - t1) . (2.9)

 

Универсальное уравнение состояния идеального газа.

Идеальным газом называется такой газ, у которого отсутствуют силы взаимного притяжения и отталкивания между молекулами и пренебрегают размерами молекул. Все реальные газы при высоких температурах и малых давлениях можно практически считать как идеальные газы.

Уравнение состояния как для идеальных, как и для реальных газов описываются тремя параметрами по уравнению (1.7).



Уравнение состояния идеального газа можно вывести из молекулярно-кинетической теории или из совместного рассмотрения законов Бойля-Мариотта и Гей-Люссака.

Это уравнение было выведено в 1834 г. французким физиком Клапейроном и для 1 кг массы газа имеет вид:

Р·υ = R·Т , (2.10)

где: R - газовая постоянная и представляет работу 1 кг газа в процессе при постоянном давлении и при изменении температуры на 1 градус.

Уравнение (2.7) называют термическим уравнением состояния или характеристическим уравнением.

Для произвольного количества газа массой m уравнение состояния будет:

Р·V = m·R·Т . (2.11)

В 1874 г. Д.И.Менделеев основываясь на законе Дальтона ("В равных объемах разных идеальных газов, находящихся при одинаковых температурах и давлениях, содержится одинаковое количество молекул") предложил универсальное уравнение состояния для 1 кг газа, которую называют уравнением Клапейрона-Менделеева:

Р·υ = Rμ·Т/μ , (2.12)

где: μ - молярная (молекулярная) масса газа, (кг/кмоль);

Rμ = 8314,20 Дж/кмоль (8,3142 кДж/кмоль) - универсальная газовая постоянная и представляет работу 1 кмоль идеального газа в процессе при постоянном давлении и при изменении температуры на 1 градус.

Зная Rμ можно найти газовую постоянную R = Rμ/μ.

Для произвольной массы газа уравнение Клапейрона-Менделеева будет иметь вид:

Р·V = m·Rμ·Т/μ . (2.13)

 

Смесь идеальных газов.

Газовой смесью понимается смесь отдельных газов, вступающих между собой ни в какие химические реакции. Каждый газ (компонент) в смеси независимо от других газов полностью сохраняет все свои свойства и ведет себя так, как если бы он один занимал весь объем смеси.

Парциальное давление – это давление, которое имел бы каждый газ, входящий в состав смеси, если бы этот газ находился один в том же количестве, в том же объеме и при той же температуре, что и в смеси.



Газовая смесь подчиняется закону Дальтона:

Общее давление смеси газов равно сумме парциальных давлений

отдельных газов, составляющих смесь.

Р = Р1 + Р2 + Р3 + . . . Рn = ∑ Рi , (2.14)

где Р1 , Р2 , Р3 . . . Рn – парциальные давления.

Состав смеси задается объемными, массовыми и мольными долями, которые определяются соответственно по следующим формулам:

r1 = V1 / Vсм ; r2 = V2 / Vсм ; … rn = Vn / Vсм , (2.15)

g1 = m1 / mсм ; g2 = m2 / mсм ; … gn = mn / mсм , (2.16)

r1 = ν1 / νсм ; r2 = ν2 / νсм ; … rn = νn / νсм , (2.17)

где V1 ; V2 ; … Vn ; Vсм –объемы компонентов и смеси;

m1 ; m2 ; … mn ; mсм – массы компонентов и смеси;

ν1 ; ν2 ; … νn ; νсм – количество вещества (киломолей)

компонентов и смеси.

Для идеального газа по закону Дальтона:

r1 = r1 ; r2 = r2 ; … rn = rn . (2.18)

Так как V1 +V2 + … + Vn = Vсм и m1 + m2 + … + mn = mсм ,

то r1 + r2 + … + rn = 1 , (2.19)

g1 + g2 + … + gn = 1. (2.20)

Связь между объемными и массовыми долями следующее:

g1 = r1∙μ1см ; g2 = r2∙μ2см ; … gn = rn∙μnсм , (2.21)

где: μ1 , μ2 , … μn , μсм – молекулярные массы компонентов и смеси.

Молекулярная масса смеси:

μсм = μ1 r1 + r2 μ2+ … + rn μn . (2.22)

Газовая постоянная смеси:

Rсм = g1 R1 + g2 R2 + … + gn Rn =

= Rμ (g11 + g22+ … + gnn ) =

= 1 / (r1/R1 + r2/R2+ … + rn/Rn) . (2.23)

Удельные массовые теплоемкости смеси:

ср см. = g1 ср 1 + g2 ср 2 + … + gn ср n . (2.24)

сv см. = g1 ср 1 + g2 сv 2 + … + gn сv n . (2.25)

Удельные молярные (молекулярные) теплоемкости смеси:

срμ см. = r1 срμ 1 + r2 срμ 2 + … + rn срμ n . (2.26)

сvμ см. = r1 сvμ 1 + r2 сvμ 2 + … + rn сn . (2.27)

 






Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...



© cyberpedia.su 2017 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав

0.008 с.