Кинетические закономерности химических процессов. Скорость реакции и скорость вещества. Схема превращения вещества. — КиберПедия 

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Кинетические закономерности химических процессов. Скорость реакции и скорость вещества. Схема превращения вещества.

2017-05-22 574
Кинетические закономерности химических процессов. Скорость реакции и скорость вещества. Схема превращения вещества. 0.00 из 5.00 0 оценок
Заказать работу

Схема превращения показывает всевозможные пути превращения в реакц.среде. Кинетика хим.р.показывает как и с какой скоростью превр-ся в-ва.Схема превращ.окисл-я аммиака:

}

Происходит дальшейшее превращ-е NO

При Т=900*С; NO-целевой продукт,использ-ся для получения HNO3.

Схема превращения состав-ся из частных р.(этапов)(1,2)

Скорость превращения в-ва – изм-е кол-ва исх.в-ва в ед.времени на ед.реакц.пространства.

-исх.в-во

-целевой продукт

Но W=S/t, S>0,t>0 =>скорость отриц.быть не может=>надо брать модуль

= const = r(скорость хим.р)

r=dc/dt-изм-конц.во времени; r=f(c,t,p,kt,h(ню),энерг)

На скорость химической реакции также влияют следующие условия и параметры:

1) природа реагирующих веществ

2) температура. При повышении температуры на каждые 10 °С скорость реакции увеличивается в 2-4 раза (правило Вант-Гоффа)

3) концентрация. Для веществ в растворенном состоянии и газов скорость химических реакций зависит от концентрации реагирующих веществ. 4) площадь поверхности реагирования. Для веществ в твердом состоянии скорость прямо пропорциональна поверхности реагирующих веществ

5) катализатор. Скорость реакции зависит от катализаторов, веществ которые ускоряют химические реакции, но сами при этом не расходуются.

-ур-ие Аррениуса(конст.скор.р)

5.Гомогенные процессы. Кинетическая модель для простых необратимых реакций различного порядка. Аналитические и графические зависимости: r(c),r(T),r(x),c(t).Теоретический оптимальный режим.

Гомогенные хим.процессы протекают в одной фазе, чаще газовой или жидкой, в кот.выравниваются усл-я протекания р-ии во всем выбранном объеме.

Отсутствуют процессы массо- теплопереноса =>скорость зависит только от С и Т.

Простая р-я . Кинетич.ур-е:

r(c) r(x)

r(T) при T=const r(c2)>r(c1)

->

-> =>

T2>T1 =>Оптимальный режим проведения простой реакции:max C и max T

 

6.Гомогенные процессы. Кинетическая модель для простых обратимых реакций. Аналитические и графические зависимости: r(c),r(T),r(x),c(t),x(T).Лнния оптимальных температур.Теоретический оптимальный режим.

Гомогенные хим.процессы протекают в одной фазе, чаще газовой или жидкой, в кот.выравниваются усл-я протекания р-ии во всем выбранном объеме.

Отсутствуют процессы массо- теплопереноса =>скорость зависит только от С и Т.

=

Т.к.скорость р-ии зависит от конц-ии 2х компонентов =>серия кривых при разлиных значениях Cr

1)экзотерм.р=>E1<E2

Е2>E1

=>общая скорость возрастает

 

 

дельта r1-приращение прямой скорости

 

 

Если с1>c2>c3>c4

максимумы могут совпадать, а могут и отличаться;

-линия оптимальных температур(r=max)

 

 

=>экзотерм.р. нужно проводить при max C и по линии оптимальных температур.

 

2)эндотерм.р-я=> E2<E1

 

Чтобы покрыть эту разницу, надо взять извне тепло(дельта Н)

 

с1>c2>c3>c4

=>эндотерм.р.нужно проводить при макс.С и макс.Т

 

7.Гомогенные процессы.Кинетическая модель для сложных реакций.Аналитические и графические зависимости: r(c),r(T),r(x),c(t),Sr(c),Sr(T).

Гомогенные хим.процессы протекают в одной фазе, чаще газовой или жидкой, в кот.выравниваются усл-я протекания р-ии во всем выбранном объеме.

Отсутствуют процессы массо- теплопереноса =>скорость зависит только от С и Т.

 


Гетерогенный процесс газ твердое. Модель «сжимающееся ядро». Математическое описание. Материальный баланс по газовой и твердой фазам. Режимы протекания процесса. Лимитирующие стадии. Наблюдаемая скорость превращения в кинетической, внутридиффузионной и внешнедиффузионной областях протекания процесса. Время полного превращения твердого. Способы интенсификации процессов, протекающих в различных лимитирующих стадиях.

 

A(тв) + В(тв) = R(газ) + S(тв) – реакция протекает на границе раздела твердых фаз исходного реагента и продукта.

 

ZnS (тв) + O2 (газ) à ZnO + SO2

 

 

Твердую частицу обтекает поток газа, содержащий реагент с концентрацией C0. Частицу окружает пограничный слой (I), через который осуществляется массообмен между поверхностью частицы и ядром потока. Реакция начинается на поверхности твердого компонента и фронтально продвигается вглубь. В какой-то момент процесса частица будет состоять из ядра, содержащего непрореагировавшее вещество, и наружного слоя продукта или/и не реагирующих, инертных для протекания реакции компонентов. Реакция протекает на поверхности ядра, в результате чего оно уменьшается, но размер частицы сохраняется.

Потоки вещества на этапах равны по з-ну сохранения массы

W1 = WII = WIII

Наблюдаем 3 потока (3 этапа)

1-ый поток (поток компонента A к поверхности частицы радиуса R)

W1 = -β(С0 -С)*S, где S = 4πR02

2-ой поток (перенос компонента A через слой инертного в-ва – диффузионный процесс и описывается уравнением Фика)

W11 = -4πr2 D dC/dr

Введем безразмерный радиус r = ρR0, получаем

W11 = -4πR0 D [ρ/(1 - ρ)] * (Cп – Cя)

3-ий поток (пусть реакция A с В имеет первый порядок по A, т.е. WA = -kCя. Скорость превращения W111 пропорциональна поверхности ядра:

W111 = -4πr2 WA = -4πR02 kCя ρя2

Подставим в равенство:

-4πR02β(С0 -С) = -4πR0 D [ρ/(1 - ρ)] * (Cп – Cя) = 4πR02 kCя ρя2 = Wчаст

Наблюдаемая скорость превращения A на всей частице Wчаст равна скорости превращения A на ядре W111, которая зависит от концентрации вещества A у его поверхности Ся. Выразим наблюдаемую скорость превращения в-ва A, отнесенную к объему (т к концентрация изменяется)

 

A. Внешнедиффузионный режим. Лимитирующая стадия – перенос компонента через внешний пограничный слой газа, окружающий частицу. Этот этап характ max движущ. силой, т.е. Сп << C0

 

 

 

Б. Внутридиффузионный режим. В этом случае лимитирующей стадией становится диффузионный перенос внутри частицы через слой инертного в-ва. Max движущ сила этой стадии осущ. При значениях концентрации, отвечающих условиям: С0≈Сп, Ся << Cg

Преобразуем

Диффузия, лимитирущая процесс, со временем затрудняется, тк увеличивается толщина слоя инертного вещества, поэтому скорость превращения и интенсивность превращения частицы со временем замедляются.

В. Кинетический режим. Лимитирующая стадия – химическая реакция, протекающая при максимально возможных концентрациях Сп = С0 = Ся

Влияние условий процесса на его интенсивность. Температура влияет на константу скорости реакции. (повышение температуры на 10 градусов приводит к увеличению K в 2-4 раза). Коэффициент массообмена β зависит только от скорости потока u.

 

ХТС производства серной кислоты. Химическая и структурная схемы. Физико-химические основы обжига серосодержащего сырья, каталитического окисления диоксида серы, адбсорции триоксида серы. Решение концепций полного использования сырья, эффективного использования энергоресурсов, минимизации отходов.

Основной потребитель серной к-ты: произв-во мин. удобрений, взрывчатых соед-ий, спиртов, ядохимикатов, синт. моющих ср-в, обработка тканей перед крашением, травление металлов, пр-во цветметаллов, произв-во неорг. к-т. Сырьевая база произв-ва серной к-ты: серосод. соед-я. Около 80% H2SO4 получают из чистой серы и колчедана, редко из H2S.

 

Химическая схема

 

 

Структурная схема

Обжиг специфичен д/каждого вида сырья, стадии окисления и абсорбции в основном схожи.

Терм. разложение пирита и восплам. серы – 470К, >950K – все 3 р-ции. Обжиг в пром-сти – при 1120-1170К. Лимит. стадия – массоперенос окислителя к месту р-ции, продуктов разложения – в газ. фазу.

 

Обжиг колчедана (пирита) является сложным физ-хим процессом и включает ряд последовательно или одновременно протекающ реакций

 

Обжиг колчедана: полочный р-р (а)– колчедан на полках, воздух проходит ч/з неподв. слои.

Колчедан кусками; чтобы процесс был непрерыв. – колчедан перемеш. гребками. Минусы: конц. SO2 в обжиговом газе - 8-9%, нельзя исп-ть мелкий колчедан. Печь кипящего слоя (б) – мелкие частицы в псевдоож. слое. Пылеобраз. колчедан на решётке, снизу ч/з распред. решётку под-ся воздух, достаточный д/взвешивания частиц. Нет слипания, хороший контакт с газом, выравнивает темпер. поле по всему слою. Хорошая ТП, конц. SO2 в обжиговом газе - 13-15%. Минус – повыш. запыленность обжиг. газа => нужна тщат. очистка газа в циклоне и на фильтре.

 

При обжиге колчедана в изб. кислорода конц-я кислорода в об. газе: b = 0,21-1,3a, где а – конц-ия SO2

Сжигание серы: темп. плав. – 386К, перед сжиганием её расплав., исп-я пар, получ. при утилиз. теплоты её горения. Расплав. сера отстаив. и фильтруется д/удаления примесей, потом насосом под-ся в печь. Горит в парофазном сост. => чтобы обесп. быстрое испар., её диспергируют в возд. потоке. Д/этого исп-ют форсуночные и циклонные печи. Форсуночные: гориз. форсунки д/тонкого распред-я. Циклонные: сера и воздух под-ся тангенциально, за счёт вихревого движения ж-сть дисперг-ся и 2 потока перемеш. Горение адиабат., Т зависит от конц-ии образ-ся SO2

 

Очистка и промывка обжигового газа. Газы обжига колчедана сод. примеси соед-ий F, Se, As + влагу. При горении обр-ся нек-ое кол-во SO3, м.б. оксиды азота => коррозия, каталитич. яд, плохое кач-во продукта. Поэтому примеси удаляют в промывном отделении.

В первой промывной башне (1) обжиг. газ охл-ся от 550-570К до 330-340К, здесь же ловят остатки пыли. Во избежание забивания насадки пылью башню делают полой. Д/частич. поглощения примесей газ орошают 50-60% H2SO4. Разб. к-та обр-ет в башне сернокислый туман с развитой пов-стью, что способствует лучшей абсорбции примесей. Обеспыленный газ отмывается 15-20% к-той от соединений As, F в промывной башне (2), оснащённой насадкой. Частички тумана укрупняются, что облегчает их удаление вместе со сконденсир. влагой в мокром электрофильтре (3). Удаление необходимо, т.к. туман вызывает сильную коррозию. В сушильной башне (4) окончательно удаляют влагу путём орошения конц. к-той – сильным водоотним. агентом. Очищ. газ поступает в турбогазодувку, обесп. его транспортировку ч/з систему. Так в турбогазодувку не попадают корродирующие в-ва + стадии обжига и промывки нах-ся под небольшим разрежением, что способствует более интенсивному закачиванию в систему воздуха, препятствующего попаданию загрязняющих в-в в атмосферу.

Окисление диоксида серы. Ф-х св-ва процесса: SO2 + 1\2 O2 ó SO3 – обратимая, экзотермич., на катализаторе с уменьш. объёма. При 773К Q=94,2 кДж/моль. Зависимость константы равновесия от Т:

 

Степ. превращения, предст. промышл. интерес (99%), дост-ся при 675-695К. Давление ~ атмосферное. Катализаторы окисления готовят на основе V2O5 с добавкой щелочных Ме, нанесённых на оксид кремния. Компоненты р. смеси р-руют с катализатором, обр-я соед-ия, к-е непосредственно катализируют р-цию. На графике Е – энергия активации.

 

Исх. конц. перераб. газа подб-ся так, чтобы режим процесса был в пределах рабоч. Т-р. Тнач д. б. ~713K (температура зажигания), чтобы процесс мог интенсивно развив.

При выборе процесса в р-ре надо проверить его устойчивость.

 

Абсорбция триоксида серы. SO3 + H2O = H2SO4 (1) – интенсивно как в ж, так и в г фазе. Может обр-ся олеум: он удобен д/транспортировки, т.к., в отличие от чистой серной, не вызывает коррозию. Олеум – основной объект сернокислотного пр-ва.

 

Мин. сод. воды в паровой фазе – при конц. к-ты 98,3% => при этой же конц. макс абсорбция SO3 и и мин. обр-ие H2SO4 в паровой фазе. Если поглощать SO3 р-ром меньшей конц. – р-ция (1) будет протекать в пар. фазе => будет сернокисл. туман, к-й будет уходить. Т влияет на скорость абсорбции: с уменьш. Т возр. р-римость газов; при Т<370K SO3 погл-ся ~на 100%. Опт условия: конц. H2SO4 в ж-сти близка к 98,3%, T <350-370K.

 

Выход. из р-ра газ, сод. SO3, проходит олеумный (1) и моногидратный (2) абсорбер. Вода противотоком под-ся в (2). Т.к. обр-ие серной и поглощ. триоксида – экзотерм. процессы, теплота отводится в холодильник (3) на линии циркуляции. Часть циркул. ч/з (2) к-ты поступает в (1), за счёт интенсивной циркуляции ж-сти абсорбция осущ-ся 20% р-ром SO3 в H2SO4, к-й частично отбирается как продукт – олеум.

Система ДКДА. Преимущества: бОльшая ст. превращения SO3 (смещение равновесия р-ции путём удаления продукта), меньше непрореаг. SO2, => меньше выбросов в атмосферу. Недостаток: бОльшие эконом. затраты.

(1) – трёхслойный р-р, конц. SO2 в поступ. газе 9,5-10,5%, степ. превр. – 90-95%.

Промежут. абсорбция в олеумном (2) и моногидратном (3) абсорберах => сод. SO3 -

0,6-1%. Т.к. во второй стадии тепла выд-ся мало, исп-ют второй ТО, расп. после 2-го слоя р-ра (1).

Т.о. общая степень превращения доходит до 99,6-99,8%.

 

Решение концепции полного использования сырья.

1) противоточный контакт фаз в стадии абсорбции – макс. движущая сила процесса переноса.

Выход. из р-ра газ, сод. SO3, проходит олеумный (1) и моногидратный (2) абсорбер. Вода противотоком под-ся в (2). Т.к. обр-ие серной и поглощ. триоксида – экзотерм. процессы, теплота отводится в холодильник (3) на линии циркуляции. Часть циркул. ч/з (2) к-ты поступает в (1), за счёт интенсивной циркуляции ж-сти абсорбция осущ-ся 20% р-ром SO3 в H2SO4, к-й частично отбирается как продукт – олеум.


Поделиться с друзьями:

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.058 с.