Обзор звуковых возможностей ПК — КиберПедия 

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Обзор звуковых возможностей ПК

2020-04-01 181
Обзор звуковых возможностей ПК 0.00 из 5.00 0 оценок
Заказать работу

ВВЕДЕНИЕ

Мультимедиа (multimedia) - это современная компьютерная информационная технология, позволяющая объединить в компьютерной системе текст, звук, видеоизображение, графическое изображение и анимацию(мультипликацию). Мультимедиа - это сумма технологий, позволяющих компьютеру вводить, обрабатывать, хранить, передавать и отображать (выводить) такие типы данных как текст, графика, анимация, оцифрованные неподвижные изображения, видео, звук и речь.

Для построения мультимедиа системы необходима дополнительная аппаратная поддержка: аналого-цифровые и цифро-аналоговые преобразователи для перевода аналоговых аудио и видео сигналов в цифровой эквивалент и обратно, видеопроцессоры для преобразования обычных телевизионных сигналов к виду, воспроизводимому электронно-лучевой трубкой дисплея, декодеры для взаимного преобразования телевизионных стандартов, специальные интегральные схемы для сжатия данных в файлы допустимых размеров и так далее. Все оборудование отвечающее за звук объединяются в так называемые звуковые карты, а за видео в видео карты. Дальше рассматривается подробно и в отдельности об устройстве и характеристиках звуковых карт, стандартах сжатия звука и некотором специализированном программном обеспечении.

С течением времени перечень задач выполняемых на ПК вышел за рамки просто использования электронных таблиц или текстовых редакторов. Компакт - диски со звуковыми файлами, подготовка мультимедиа презентаций, проведение видео конференций и телефонные средства, а также игры и прослушивание аудио CD для всего этого необходимо чтобы звук стал неотъемлемой частью ПК. Для этого необходима звуковая карта Рис.2.

Мы все уже привыкли к тому, что современный персональный компьютер может издавать весьма разнообразные звуки. Вначале они могли только гудеть и пищать на разные лады, затем появились программы, произносящие вполне отчетливые слова и играющие отдаленное подобие музыки, слушаемой через водосточную трубу; компьютерные игры довольно быстро научились даже при помощи встроенного громкоговорителя (рис.1) издавать что-то вроде выстрелов и взрывов. А теперь повсеместное распространение недорогих звуковых карт позволило воспроизводить с их помощью любые теоретически возможные звуки. Однако в большинстве случаев мы с вами слышим только те звуки, которые были, как говорится, заложены при разработке той или иной программы, а между тем многим хочется гораздо большего. Все это вполне возможно - при наличии требуемых аппаратных средств и/или программ, а главное - знаний о способах извлечения нужных звуков из такого вроде бы немузыкального устройства, как компьютер, так как компьютер по первоначальному определению это устройство для хранения, обработки и передачи информации.

 

 

Рис.1.

Встроенный динамик PC-Speaker. 

 

 

Рис.2.

Мультимедийный комплекс.

                                                          

Компьютеры не задумывались своими создателями как устройства для занятий музыкой. Их изначальное предназначение типично для любой полезной машины - освободить человека от тяжелой и монотонной работы. В данном случае речь идет об умственной деятельности рутинного характера, связанной с громоздкими вычислениями и сортировкой большого количества данных. Просто так уж случилось, что многие профессионалы в разных сферах, любящие и хорошо понимающие то, чем они занимаются, сумели воспользоваться присущей вычислительным машинам универсальностью и использовать ее для пользы своего дела. Легендарный Макс Мэтьюз из Bell Laboratories начал заниматься машинным синтезом звука еще в 60-е годы, когда компьютер занимал целый этаж, и вряд ли вызывал у большинства музыкантов прилив творческого вдохновения. Видимо, создатель программы Music 4 достаточно хорошо представлял, что ему нужно от жизни и от вычислительной машины.

Целью курсовой работы является закрепление и углубление теоретических знаний и приобретение практических навыков по изучаемой дисциплине и смежным дисциплинам.

Задача данной курсовой работы – рассказать о наиболее известных программах для работы со звуком, об их преимуществах, показать простоту работы с профессиональным программным обеспечением. Научиться работать с наиболее популярным музыкальным программным обеспечением.


Преобразователи АЦП и ЦАП

Наиболее естественным способом "подружить" цифровой компьютер с его "рваной" импульсной системой передачи информации, и непрерывный реальный мир является использование преобразователей аналоговых сигналов в цифровые и обратно, которые и называются аналогово-цифровыми и цифро-аналоговыми преобразователями - АЦП и ЦАП. Первый получает непрерывный аналоговый сигнал и постоянно выдает поток цифровых сигналов, второй действует наоборот. При этом говорят, что АЦП кодирует аналоговый сигнал, а ЦАП - декодирует его. В англоязычной литературе используются обозначения ADC и DAC, а также codec (coder/decoder).

Для преобразования в цифровой код аналоговый сигнал приходится подвергать дискретизации - разбиению на фиксированные участки во времени и на ряд фиксированных величин - по уровню. Каждый элементарный участок сигнала кодируется одним числом, величина которого пропорциональна среднему уровню сигнала на этом участке; такое число называется отсчетом. Числа появляются на выходе АЦП синхронно с изменением сигнала на входе; точность преобразования будет тем выше, чем выше частота следования отсчетов и чем больше используется фиксированных значений уровня. Частота следования отсчетов называется частотой дискретизации, а диапазон значений отсчета определяется разрядностью его двоичного представления.

Выбор частоты дискретизации важен в первую очередь для передачи частотного диапазона сигнала - при слишком низкой частоте звук становится глухим и неразборчивым. Чаще всего для хорошей передачи звука достаточно частоты, вдвое большей максимальной частоты исходного сигнала, хотя для достижения высокого качества используется трех - пятикратное превышение. А разрядность влияет прежде всего на количество искажений и шумов, вносимых в звук - при недостаточной точности отсчетов звук становится резким и неприятным, как внутри металлической трубы.

В популярных сейчас бытовых проигрывателях компакт-дисков используется частота дискретизации 44.1 кГц и отсчеты в 16 двоичных разрядов (65536 фиксированных уровней). В цифровых телефонных линиях применяется 8-разрядная (256 уровней) оцифровка на 8 кГц, а в студийных системах обработки звука - 24-разрядная (16777216 уровней) с частотой 96 кГц. Понятно, что с ростом частоты дискретизации и разрядности отсчета растет и объем данных, занимаемый звуком. Например, один компакт-диск вмещает 74 минуты стереозвучания, однако при записи на нем звука в монофоническом телефонном формате время непрерывного звучания составит более суток.

Самый простой ЦАП делается при помощи так называемой резистивной матрицы, когда все разряды двоичного числа, представляющего отсчет, через резисторы с различным сопротивлением сводятся в одну точку, причем сопротивление резисторов падает с ростом старшинства разрядов двоичного числа. Таким образом, изменение старшего разряда из 0 в 1 и наоборот будет вносить в линию максимальное изменение напряжения, а то же самое в младшем разряде - минимальное, и в случае 8 разрядов разница составит в точности 256 раз. При последовательном переборе всех чисел от 0 до 255 сигнал на выходе будет ступенчато изменяться от нуля до максимума - в 256 раз более плавно, чем простой цифровой переход от 0 к 1.

Лет десять назад на компьютерах IBM PC подобные 8-разрядные ЦАП делались при помощи параллельного порта принтера, имеющего как раз 8 линий данных, а при использовании дополнительных линий управления - и более качественный 12-разрядный. Выводя из программы в порт отсчеты с нужной скоростью, можно получить достаточно чистый звук, сравнимый по качеству с телефоном или дешевым магнитофоном.

Сейчас выпускается широчайший ассортимент звуковых адаптеров, или карт, для всех видов персональных компьютеров, а во многих моделях они являются компонентом системной платы. Современный звуковой адаптер содержит 16-разрядные стереофонические ЦАП и АЦП, работающие на частоте 5..48 кГц, которые передают и получают цифровой звук по каналам прямого доступа к памяти (DMA), без прямого участия программ, которым остается только вовремя забирать готовый оцифрованный фрагмент с АЦП, или подавать очередной цифровой фрагмент на ЦАП. Многие адаптеры могут записывать и воспроизводить звук одновременно, и программа при должном быстродействии может синхронно воспроизводить записанный звук в уже обработанном виде.

Частотная модуляция (FM)

Другой, более простой, метод синтеза состоит в генерации синусоидального сигнала, частота которого управляется другими генераторами таких же сигналов - это разновидность частотной модуляции (англ. FM). В результате получается сигнал весьма сложной структуры, тембр которого может меняться в чрезвычайно широких пределах. При достаточном количестве управляющих друг другом генераторов (так называемых операторов) и точном подборе их параметров можно не только синтезировать необычные звуки, но и достаточно точно имитировать звуки природы и музыкальных инструментов. Однако на практике количество операторов не превышает десяти, и разумное управление даже таким небольшим их числом сильно затруднено. В большинстве звуковых адаптеров есть аппаратный FM-синтезатор с двумя или четырьмя операторами, при помощи которого можно синтезировать различные шумы, стуки и звоны, однако для имитации музыкальных инструментов он в силу своей простоты совершенно непригоден.

Обзор

Для получения приемлемого качества записи компьютерной музыки необходимо пользоваться аппаратурой, способной его обеспечить. Число различных моделей звуковых карт составляет несколько десятков. А если учитывать еще и различные версии одних и тех же устройств, то при покупке карты приходится выбирать почти из сотни наименований. Не всякая звуковая карта способна на большее, чем озвучивание компьютерных игр. Конечно, принадлежность звуковой карты к продукции известных фирм является веской причиной того, что именно ее следует выбрать, это скажется в дальнейшем на надежности работы. К важнейшим параметрам относятся, в первую очередь:

> метод синтеза музыкальных звуков, реализованный в синтезаторе звуковой карты;

> разрядность АЦП/ЦАП звуковой карты;

> диапазон частот дискретизации;

> отношение сигнал/шум;

> динамический диапазон.

В современных звуковых картах по-прежнему применяется частотный синтез звуков (FM-синтез), но это делается в основном в целях обеспечения поддержки старых игр. Основным методом синтеза в настоящее время является волновой метод, или, как его еще называют, метод волновых таблиц (WT-синтез).

После первого же сравнения звучания MIDI-инструментов в FM и WT вариантах можно решить для себя, что FM-инструменты не стоят того, чтобы тратить на них время. Поэтому дальше речь пойдет только о WT-синтезаторах звуковых карт.

 

Разрядность звуковой карты

Разрядность звуковой карты существенно влияет на качество звука. Однако перед тем как перейти к более детальному обсуждению этого вопроса, следует пояснить, что речь идет о разрядности АЦП и ЦАП. Звуковые карты двойного назначения имеют в своем составе одновременно два функционально независимых узла: WT-синтезатор и устройство оцифровки звуковых сигналов, поступающих с внешнего источника. В каждый из узлов входит как минимум по одному ЦАП. В устройстве оцифровки, кроме того, имеется АЦП. В недавнем прошлом прямое указание на разрядность звуковой карты содержалось в ее названии в виде числа 16. Тем самым изготовители подчеркивали, что в их продукции качество цифрового звука как бы соответствует качеству звука лазерного проигрывателя, а не какой-нибудь там 8-битной карты. В дальнейшем 16 разрядов в ЦАП/АЦП стали нормой, а числа «32» или «64» в названиях стали означать совсем другое — максимальное количество одновременно звучащих голосов синтезатора звуковой карты (полифонию).

Некоторые высококачественные звуковые карты оборудованы 18-битными и даже 24-битными ЦАП/АЦП. Звуковые редакторы, работая с любыми звуковыми картами, в том числе и 16-битными, в процессе преобразований отсчетов сигнала используют арифметику с разрядностью двоичного представления числа, превышающей 16. Это позволяет уменьшить погрешность, накапливающуюся в процессе выполнения сложных алгоритмов обработки, которая в противном случае проявлялась бы как искажение звука.

Почему же столь важно наличие большого числа разрядов в устройствах ЦАП и АЦП? Дело заключается в том, что непрерывный (аналоговый) сигнал преобразуется в цифровой с некоторой погрешностью. Эта погрешность тем больше, чем меньше уровней квантования сигнала, т. е. чем дальше отстоят друг от друга допустимые значения квантованного сигнала. Число уровней квантования, в свою очередь, зависит от разрядности АЦП/ЦАП. Погрешности, возникающие в результате замены аналогового сигнала рядом квантованных по уровню отсчетов, можно рассматривать как его искажения, вызванные воздействием помехи. Эту помеху принято образно называть шумом квантования. Шум квантования представляет собой разность соответствующих значений реального и квантованного по уровню сигналов.

В случае превышения сигналом значения самого верхнего уровня квантования («старшего» кванта), а так же в случае, когда значение сигнала оказывается меньше нижнего уровня квантования («младшего» кванта), т. е. при ограничении сигнала, возникают искажения, более заметные по сравнению с шумом квантования. Для исключения искажений этого типа динамические диапазоны сигнала и АЦП должны соответствовать друг другу: значения сигнала должны располагаться между уровнями, соответствующими младшему и старшему квантам.

При записи внешних источников звука это достигается с помощью регулировки их уровня, кроме того, применяется сжатие (компрессия) динамического диапазона, о которой речь пойдет ниже.

В звуковых редакторах существует операция нормализации амплитуды сигнала. После ее применения наименьшее значение сигнала станет равным верхнему уровню младшего кванта, а наибольшее — нижнему уровню старшего. Таким образом, от ограничения сигнал сверху и снизу будет защищен промежутками, шириной в один квант. Разумеется, если при записи уже имело место ограничение амплитуды, то нормализация не избавит сигнал от искажения.

Приемлемым считается 16-разрядное представление сигнала, являющееся в настоящее время стандартным для воспроизведения звука, записанного в цифровой форме. С точки зрения снижения уровня шумов квантования дальнейшее увеличение разрядности АЦП нецелесообразно, т. к. уровень шумов, возникших по другим причинам (тепловые шумы, а также импульсные помехи, генерируемые элементами схем компьютера и распространяющиеся либо по цепям питания, либо в виде электромагнитных волн), все равно оказывается значительно выше, чем —96дБ.

Однако увеличение разрядности АЦП обусловлено еще одним фактором — стремлением расширить его динамический диапазон. Динамический диапазон это максимальное и минимальное значения сигнала, который может быть преобразован в цифровую форму без искажения и потери информации. Минимальный сигнал не может быть меньше, чем напряжение, соответствующее одному кванту, а максимальный — не должен превышать величины напряжения, соответствующего N квантам. Поэтому динамический диапазон для 16-разрядного АЦП составляет 96 дБ, для 18-разрядного— 108 дБ, для 20-разрядного— 120 дБ. Иными словами, для записи звучания некоторого источника звука, динамический диапазон которого составляет 120 дБ, требуется двадцатиразрядный АЦП. Если такого нет, а имеется только шестнадцатиразрядный, то динамический диапазон звука должен быть сжат на 24 дБ: со 120 дБ до 96 дБ.

В принципе, существуют методы и устройства сжатия (компрессии) динамического диапазона звука. Но то, что они проделывают со звуком, как ни смягчай формулировки, все равно искажает его. Именно поэтому так важно для оцифровки звука использовать АЦП, имеющий максимальное количество разрядов. Владелец 16-битной звуковой карты может убедиться в отсутствии особых причин для расстройства: динамические диапазоны большинства источников звука вполне соответствуют динамическому диапазону такой звуковой карты. Кроме того, 18-битное или 20-битное представление сигнала применяется только на этапе обработки звука. Конечная аудиопродукция (CD и DAT) реализуется в 16-битном формате.

После того как мы немного разобрались с разрядностью звуковой карты, пришло время поговорить о частоте дискретизации.

Частота дискретизации

 

В процессе работы АЦП происходит не только квантование сигнала по уровню, но и его дискретизация во времени. Сигнал, непрерывно изменяющийся во времени, заменяют рядом отсчетов этого сигнала. Обычно отсчеты сигнала берутся через одинаковые промежутки времени. Интуитивно ясно, что если отсчеты отстоят друг от друга на слишком большие интервалы, то при дискретизации может произойти потеря информации: если важные изменения сигнала произойдут не в те моменты, когда были взяты отсчеты, они могут быть «пропущены» преобразователем. Получается, что отсчеты следует брать с максимальной частотой. Естественным пределом служит быстродействие преобразователя. Кроме того, чем больше отсчетов приходится на единицу времени, тем больший размер памяти необходим для хранения информации.

Проблема отыскания разумного компромисса между частотой взятия отсчетов сигнала и расходованием ресурсов трактов преобразования и передачи информации возникла задолго до того, как на свет появились первые звуковые карты. В результате исследований было сформулировано правило, которое в отечественной научно-технической литературе принято называть теоремой Котельникова [Котельников В.А. Теория потенциальной помехоустойчивости.— М., Госэнергоиздат, 1956].

Если поставить перед собой задачу обойтись без формул и использования серьезных научных терминов типа «система ортогональных функций», то суть теоремы Котельникова можно объяснить следующим образом. Сигнал, представленный последовательностью дискретных отсчетов, можно вновь преобразовать в исходный (непрерывный) вид без потери информации только в том случае, если интервал между соседними отсчетами не превышает половины периода самого высокочастотного колебания, содержащегося в спектре сигнала.

Из сказанного следует, что восстановить без искажений можно только сигнал, спектр которого ограничен некоторой частотой F. Теоретически все реальные сигналы имеют бесконечные спектры. Для того чтобы при дискретизации избежать искажений, вызванных этим обстоятельством, сигнал вначале пропускают через фильтр, подавляющий в нем все частоты, которые превышают заданное значение Fmax и лишь затем производят дискретизацию. Согласно теореме Котельникова частота, с которой следует брать отсчеты, составляет Fд = 2Fmax Теорема получена для идеализированных условий. Если учесть некоторые реальные свойства сигналов и устройств преобразования, то частоту дискретизации следует выбирать с некоторым запасом по сравнению со значением, полученным из предыдущего выражения.

В стандарте CD частота дискретизации равна 44,1 кГц. Для цифровых звуковых магнитофонов стандартная частота дискретизации составляет 48 кГц. Звуковые карты, как правило, способны работать в широком диапазоне частот дискретизации. Важно, чтобы максимальное значение частоты дискретизации было не менее 44,1 кГц, в противном случае качества звучания CD достичь не удастся. Следует различать частоту дискретизации в АЦП/ЦАП, предназначенных для оцифровки внешних сигналов, и частоту дискретизации в ЦАП WT-синтезатора звуковой карты. Значение последней может не совпадать с указанными стандартными значениями.

Что такое MIDI-технология

Появившаяся в начале восьмидесятых годов MIDI-технология вскоре получила новый импульс в связи с широким распространением персональных компьютеров.

Миди файл представляет собой список ссылок на звуки в WT синтезаторе звуковой карты, и список команд, таких как тональность, продолжительность, скорость звука и т.д.

Основными недостатками MIDI считаются низкая скорость передачи информации, узкий диапазон изменения параметров и ограниченная сфера применения. В то время как одно из главных ее достоинств — небольшой объем файлов — в последнее время уже потеряло решающее значение: цены на пишущие CD-приводы и “болванки” для записи становятся все доступнее. А с появлением широких возможностей по использованию при создании музыки готовых, заранее записанных музыкальных фраз с CD-качеством (всякие “лупы”, “сэмплы” и т.п.) многие “артисты” вообще решили, что таких проблем, как обучение нотной грамоте, владению инструментом, MIDI-технология и пр. для них не существует.

Однако если принять во внимание, что MIDI-технология изначально предназначалась не для записи или воспроизведения музыки, а только лишь для управления на некоем расстоянии (в пространстве и времени) синтезаторами, звуковыми модулями и прочими “железными” ящиками, то многие претензии к ней будут сняты. Это все равно, что упрекать виолончель за плохое звучание во флейтовом регистре.

Итак, чтобы закончить мысль о достоинствах и недостатках MIDI, сделаем несколько предварительных выводов. Во-первых, MIDI-технология остаётся ведущей в компьютерной и аппаратно-студийной области. Во-вторых, она совершенствуется, учитывает новые требования и новые технические возможности. Об этом говорит последовательное появление стандартов GM, GS и XG. В-третьих, идея оказалась настолько удачной, что MIDI-технология вовлекает в сферу своего влияния все новые и новые области, для которых она и не предназначалась, — управление магнитофонами, устройствами звуковой обработки, микшерскими пультами (не говоря уже о мультимедийных продуктах и компьютерных играх).

В музыкальном обучении качество звучания уже не играет столь значительной роли, как в звукозаписи или концертной деятельности. Зато возможность воспроизводить изучаемый опус в любом темпе и (тут вокалисты и духовики должны затаить дыхание) в любой тональности делают MIDI-технологию незаменимой в музыкальных школах и училищах. Смешно сказать, но для этого достаточен 286-й компьютер со звуковой картой за 40 долл. Я думаю, недалеко то время, когда некий аппарат, подобными характеристиками станет распространенней метронома. А вместо толстых нотных сборников люди будут покупать дискеты с этюдами Черни или Шопена.

 

Описание MIDI-интерфейса.

MIDI — Musical Instrument Digital Interface — компьютерный протокол (иногда говорят — язык), предназначенный для связи одного музыкального устройства с другим. Оба эти устройства должны обладать любого вида микропроцессором или программой, которые поддерживают MIDI-протокол.

 

 

Рис.4.

Пример использования MIDI.

 

Пример использования MIDI: На синтезаторе вы можете играть ноты, выбирать новый тембр инструмента, менять громкость, но сам он сейчас не звучит. Все перечисленные действия передаются по MIDI-кабелю (красного цвета) в виде команд на звуковой модуль. Последний выполняет все эти действия (звучат сыгранные ноты, меняется тембр и громкость) и выдает звук через обычные динамики. Красная стрелка показывает направление потока MIDI-сообщений (Рис.4).

Цель MIDI — управлять работой музыкального устройства не с его панели или клавиатуры, а на расстоянии (по MIDI-кабелю) — с другого устройства. Для этого второе устройство передает первому последовательность управляющих команд, которые называются MIDI-сообщениями.

 

MIDI-разъемы

По MIDI-кабелю (в отличие, скажем, от телефонного) информация передается всегда в одном направлении. Поэтому каждый MIDI-разъем используется только для одной цели в зависимости от его вида.

 

                     

                                           

                                                                          Таблица 1.

 

Виды MIDI-разъемов

 

MIDI Out MIDI-выход. Через этот разъем устройство посылает MIDI сообщение на другое устройство
MIDI In MIDI-вход. Через этот разъем устройство получает MIDI сообщение от другого устройства
MIDI Thru Сквозной. Через этот разъем посылается точная копия любого MIDI-сообщения, которое поступило на разъем MIDI In

 

В качестве разъема для MIDI используется стандартный европейский 5-контактный разъем Рис. 5.

 

 

Рис. 5.

MIDI-разъем. Контакт 2 — земля, контакты 4 и 5 — сигнальные, контакты 1 и 3 — не используются.

 

Существует три вида MIDI-разъемов, они представлены выше в таблице.

MIDI-кабель соответственно должен иметь три провода, которые соединяют контакты 1, 4 и 5 на обоих его концах.

 

Типы MIDI-сообщений

Все типы MIDI-сообщений делятся на две большие группы (рис. 8). Системные MIDI-сообщения (System message) передают команды, которые воздействуют на общие параметры и режимы работы всех устройств-получателей.

 

 

Рис. 8.

Разделение всех типов MIDI-сообщений на две группы.

 

Примером системного сообщения может служить команда “Старт”, которая включает режим воспроизведения у любого секвенсора или магнитофона, находящегося в MIDI-связке.

Канальные MIDI-сообщения (Channel message) включают в себя номер MIDI-канала и передают сообщения на каждый MIDI-канал индивидуально. Всего для одного (и каждого) устройства MIDI-технология предусматривает 16 MIDI-каналов.

 

MIDI-каналы

Представьте себе обычный многодорожечный магнитофон. На одну дорожку можно записать трубу, на другую — гитару и так далее. При воспроизведении мы слышим все записанные дорожки одновременно.

MIDI-каналы предназначены для того, чтобы один синтезатор или звуковой модуль мог играть несколькими разными тембрами одновременно, причем каждый тембр (инструмент) исполняет свою независимую партию.

Когда одно устройство передает канальные MIDI-сообщения на другое, внешне это выглядит так, как если бы они были соединены шестнадцатью кабелями (и по каждому следуют указания о том, какие ноты каким тембром играть).

 

 

Рис. 9.

Разделение MIDI-сообщений на MIDI-каналы.

 

На самом деле MIDI-технология использует один кабель, но в каждое канальное MIDI-сообщение вписывается номер MIDI-канала, для которого оно предназначено. Устройство-получатель, пользуясь этим номером, направляет каждое канальное MIDI-сообщение на свой канал (рис. 9).

 

Модели кодирования сигнала

В рамках формата МРЗ для работы со стереозвуком существуют четыре основные модели кодирования сигнала:

1) Первая модель Dual Channel основана на том, что каждый канал получает половину потока и кодируется как моносигнал. Отсюда и ее название. Эта модель идеально подходит в случае, когда каналы содержат абсолютно разные сигналы;

2) В модели Stereo каждый из каналов кодируется отдельно, но кодеру "позволено" самому принять решение о передаче одному из каналов большего места, чем другому. Этим достигается кодирование "тишины" (либо уровень сигнала лежит ниже порога слышимости) в одном канале, когда в другом присутствует мощный сигнал;

3) Модель MS Stereo использует разложение стереосигнала на средний между каналами и разностный, который кодируется с меньшим битрейтом. Данный метод не рекомендуется использовать, если каналы не совпадают по фазе (наиболее часто встречается в записях, оцифрованных с аудиоленты);

4) Модель MS/IS Stereo позволяет несколько увеличить качество кодирования сигнала при использовании низких битрейтов. Суть метода заключается в использовании на некоторых частотных диапазонах отношения мощностей сигнала в разных каналах. Однако данный метод приводит к потере фазовой информации.

 

Продолжение Mp3 - Mp3 Pro

14 июня 2001 года вышло продолжение MP3 – Mp3Pro. Создателем MP3Pro является частная компания Coding Technologies. Созданная в 1997 году, компания занимается разработкой и маркетингом кодеков на основе технологии SBR (S pectral B and R eplication). За спиной у компании Coding Technologies стоят два очень солидных стратегических партнера - Fraunhofer Institute и Thomson Multimedia, а также достаточное количество инвесторов, среди которых такие люди, как профессор Heinz Gerhauser - глава института Fraunhofer. В связи с этим, следует также заметить, что Coding Technologies имеет доступ ко всем разработкам института Fraunhofer, а само название MP3Pro дала новому формату компания Thomson Multimedia, которая и занимается его продвижением совместно со своей дочерней компанией RCA.

Первый проигрыватель, поддерживающий новый формат, уже появился - это Thomson mp3PRO Audio Player 1.0.2 (Рис.). Помимо проигрывающей части этот плеер содержит ещё и демо-версию кодера, сжимающего wav-файлы в MP3Pro (правда только на 64 кбит/c).

 

 

Рис.12.

 

Достоинства и недостатки формата Mp3 Pro:

1) Достоинства:

· достойное качество звука на низких битрейтах;

· достаточно низкие системные требования;

· высокая степень сжатия.

2) Недостатки:

· отсутствие поддержки высоких битрейтов;

· синтез высоких частот из средних.


Подготовка программы к работе

 

Без этого этапа просто невозможно обойтись. Правда, при начальной установке программа должна сама производить все необходимые настройки. Но не все может получиться (как по Вашей вине, так и по вине программы), поэтому не исключено, что, загрузив файл с примером совместного использования MIDI и цифрового звука (например, Riff Funk Audio and MIDI Demo), вы не услышите либо MIDI, либо цифровой звук, либо и то, и другое.

 

Для начала заглянем в окно MIDI Ports, возможный вид которого показан на рис. 13. Вызов этого окна осуществляется с помощью пункта команды Settings > MIDI Devices. В спискеInput Ports выбираются порты ввода MIDI-информации (в нашем примере выбран вход MIDI-интерфейса звуковой карты, к которому подключена MIDI-клавиатура).Out Ports — это список MIDI-устройств, на которые будет осуществляться вывод MIDI-информации (воспроизведение). Следует заметить, что одновременно можно выбрать несколько устройств, и все они станут доступными для ввода/вывода MIDI-информации. На рис.13. показано, что в числе устройств вывода выбраны синтезатор на основе микросхемы EMU8000 и FM-синтезатор на основе OPL3.

 

Рис.13.

Окно выбора MIDI-устройств ввода/вывода.

 

КнопкуMove Selected Devises to Top (передвинуть выбранные устройства в начало списка) производители программы задумали для того, чтобы выбранные в списке устройства следовали одно за другим.

Следующий шаг — настройка портов ввода/вывода цифрового звука. Выполнить эту настройку рекомендуется даже в том случае, если программа на первый взгляд работает нормально (цифровой звук воспроизводится), но при выполнении каких-либо действий (манипуляций с окнами, меню и т. п.) происходят сбои в воспроизведении звука (временные изменения темпа или вообще прекращение воспроизведения).

На всякий случай с помощью командыSettings > Audio Hardware откройте окноAudio Hardware (рис.14).

 

 

Рис.14.

Окно выбора устройства ввода/вывода цифрового звука

 

В этом окне находится список звуковых карт, поддерживаемых программой. Возможно, список покажется вам коротким, но это только на первый взгляд. Под устройством WindowsSound Cards следует понимать любую звуковую карту, драйверы которой установлены в системе Windows. Ваша звуковая карта, скорее всего, попадает в такую категорию. Остальные устройства в рассматриваемом списке — это HDD-рекордеры, профессиональные многоканальные звуковые карты, оборудованные мощными эффект-процессорами для обработки звука и наложения эффектов в режиме реального времени. Конечно, обычная звуковая карта не способна на такие чудеса.

У вас не будет возможности обработки звука в режиме реального времени, однако звук можно записать и обработать заранее, например, с помощью того же Cool Edit, и импортировать уже его в Cakewalk. Единственное неудобство, возникающее при таком подходе, это невозможность отмены операций по обработке звука во время сведения музыкальной композиции (ведь мы обрабатывали звук в одной программе, а используем его в другой).

Суть технологии сведения проста: запись и начальная обработка звука выполняется во внешнем звуковом редакторе (если это необходимо, то используются то возможности этого редактора, аналог которых отсутствует в Cakewalk), а окончательная обработка (в том числе и наложение эффектов) производится средствами Cakewalk. Обработка звука в Cakewalk Pro Audio 6.0 реализована по тому же принципу, что и в любом редакторе звуков: звук «рассчитывается» заранее, а уже потом, когда вы нажимаете кнопку Play, он воспроизводится. Но Cakewalk существенно отличается от обычного редактора звуков таким свойством, как многоканальность. По сути дела, одновременно могут воспроизводиться сразу несколько звуковых файлов. Для этого не требуется никакой особенной звуковой карты, звук микшируется «математическим» способом: процессор просто берет и суммирует значения звуковых отсчетов, соответствующих одному и тому же моменту времени, всех звучащих одновременно WAVE-файлов. А результат сложения воспроизводится через ЦАП.

 

Воспользовавшись командойSettings > Audio Options вызовите окно диалогаWindows Multimedia Configuration, изображенное на рис.15.


Рис.15.

Окно конфигурирования цифрового канала ввода/вывода.

В спискеAudio Sampling Rate задается частота сэмплирования для всех звуковых сообщений, которые будут записаны в процессе создания музыкальной композиции. Этот параметр доступен для изменения до тех пор, пока сэмпл не содержит ни одного звукового сообщения. Конечно же, выберем частоту сэмплирования 44,1 кГц.

Mono Record/Playback — опция, интересующая только обладателей звуковой карты Roland RAP-10. Она позволяет использовать режим Full-Duplex, жертвуя при этом стереофонией.

Playback Timing Master и Record Timing Master — списки, содержащие перечни источников синхронизации при записи и воспроизведении, в качестве которых обычно выступают драйверы соответствующих устройств (в нашем примере — это драйверы цифрового канала звуковой карты).

Enable Low-Latency Mixing — микширование с маленькой задержкой. Как мы уже говорили, микширование цифрового звука осуществляется математическим путем. С помощью микшера (окноPanel) вы можете изменять в режиме реального времени (и записывать эти изменения) такие параметры микширования цифрового звука, как панорама и громкость, Это требует довольно больших вычислительных р


Поделиться с друзьями:

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.019 с.