Такие разные операционные системы — КиберПедия 

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Такие разные операционные системы

2020-03-31 142
Такие разные операционные системы 0.00 из 5.00 0 оценок
Заказать работу

Первое знакомство

 

Данный раздел называется “первое знакомство”. Здесь вы действительно познакомитесь с первым приложением для Windows. Но не думайте, что это знакомство только с простейшим приложением. Здесь вы познакомитесь с некоторыми основными идеями, заложенными в системы типа Windows, а также с их влиянием на работу (и написание) приложений. Простейшее приложение оказывается лишь поводом для серьезного знакомства с целым классом систем.

Не ищите здесь подробных обсуждений тех или иных вопросов — здесь будут встречаться только обзоры, а более полные сведения вы сможете найти в последующих разделах. Такая структура принята потому, что программирование в Windows требует использования функций и инструментов из самых разных подсистем, так что последовательное рассмотрение Windows API практически невозможно.

Так, например, даже в простейшем приложении надо осуществлять вывод данных в окно. Для этого необходимо изучить графический интерфейс устройств (GDI) и контекст устройства. Но для этого надо уже быть знакомым с диспетчером памяти, с описанием ресурсов приложения, с использованием стандартных диалогов, с обработкой сообщений и многим другим. При рассмотрении любого из перечисленных пунктов пришлось бы ссылаться на другие разделы, в том числе на тот же графический интерфейс.

Краткие сведения о разделении ресурсов в Windows

 

Для того, что бы Windows мог успешно разделять ресурсы, на разрабатываемые программы накладывают ряд требований[2]. Понятно, что первым таким требованием является требование не использования аппаратуры непосредственно. Вы можете использовать только средства Windows для выполнения всех своих задач, но не осуществлять доступ к аппаратуре непосредственно.

Например, приложение не должно обращаться к видеопамяти, средствам BIOS и т.д. Если приложение должно вывести на дисплей какое–либо изображение оно обязано воспользоваться существующими функциями Windows.

Конечно, ограничение на доступ к аппаратуре — не самое приятное ограничение, но оно имеет и свою оборотную, причем приятную, сторону: пользователь (и разработчик) может не думать о том, с чем конкретно он имеет дело — об этом заботиться Windows. То есть Windows сам обеспечивает выполнение всех требуемых операций на имеющемся оборудовании, причем используя практически все возможности этого оборудования.

Интересно обзорно рассмотреть методы разделения основных ресурсов компьютера между задачами, принятыми в Windows, и влияние этих методов на правила написания программ. Причем для первого знакомства отталкиваться мы будем от наиболее простой системы — Windows 3.x.

К основным разделяемым ресурсам несомненно относятся дисплей, клавиатура, мышь, оперативная память, процессор и диск. Стоит коротко отметить методы разделения каждого из этих ресурсов.

Дисплей

 

Для разделения дисплея между разными задачами в Windows используются окна (window). Каждой задаче назначено, по меньшей мере, одно окно, и осуществлять вывод приложение может (точнее должно) только в это окно.

Приложение может обладать несколькими окнами. В этом случае, обычно, одно окно является родительским (parent), а другие являются дочерними (child) окнами по отношению к родительскому окну. Как правило, приложение имеет только одно окно, не имеющее родителей — это так называемое главное окно приложения (main window). Все остальные окна приложения являются дочерними по отношению к этому окну.

Окна могут перемещаться по экрану, перекрывая полностью или частично другие окна. Окна могут находиться в максимизированном (“распахнутом” на весь экран, maximized, zoomed), нормальном или минимизированном (minimized, iconed) состоянии. В минимизированном состоянии окно заменяется на специальную небольшую картинку, называемую пиктограммой (иконой, icon), либо помещается в специальный список окон (taskbar или systray для Windows–95 и Windows NT 4.0).

Основная логика использования перекрывающихся окон реализована в Windows, хотя программистам остается достаточно много работы — приложение вынуждено перерисовывать окно каждый раз, когда возникает в этом необходимость (например, при увеличении размеров окна, если ранее скрытое окно становится видимым и в других случаях).

То, что не вся работа по перерисовке перекрывающихся окон выполняется системой, связано с использованием графического режима отображения окон. Для полной автоматизации необходимо было бы “виртуализовать” всю работу с окнами — то есть в обычной оперативной памяти должна находиться копия изображения окна. Тогда Windows мог бы полностью или частично восстанавливать изображение при появлении ранее невидимой части окна по этой копии. Однако общий размер нескольких копий (для каждого окна своя копия) может быть сопоставим с объемом всей оперативной памяти компьютера. Скажем для режима 1280x1024, 16 бит/пиксель (это далеко не самый хороший) битмап экрана занимает примерно 2.5MB. Кроме того, размер окна может быть больше экрана и таких окон может быть несколько. Таким образом Windows практически не может использовать виртуальные окна — ресурсов компьютера для этого явно не хватает (их еще надо разделять с выполняемыми приложениями и с компонентами самой системы).

Строго говоря, окно в Windows является тем самым объектом, для которого частично реализован объектно–ориентированный подход. Интересно, что в документации Windows термин “объект” никогда не применяется к окну, а то, что называется “объектами”, ни в коей мере не является объектами ООП.

Клавиатура и мышь

 

Эти устройства относятся к устройствам ввода данных. Разделение этих устройств между разными задачами легко можно разбить на два круга вопросов:

· определение, к какой задаче относятся данные, полученные от устройства ввода.

· передача полученных от устройства данных требуемой задаче.

Для мыши определение, к какой задаче относятся данные, вполне очевидно: так как каждая задача имеет по крайней мере одно окно, то информация от мыши должна использоваться окном, на фоне которого находится курсор мыши.

Для клавиатуры дело обстоит несколько сложнее: нам придется ввести понятие активное окно (active window). В данный момент времени обязательно существует только одно активное окно, это окно выделяется цветом заголовка, рамки или подписи (если окно минимизировано). Активное окно является пользователем клавиатуры в данный момент времени. Для того, что бы другая задача могла получать данные, необходимо сделать активным окно, принадлежащее этой задаче.

Передача полученных от устройства данных требуемой задаче. Хотя интуитивно кажется, что здесь не должно быть особых сложностей, но именно здесь очень ярко проявляются особенности организации Windows. Мы к этому вернемся, рассматривая метод разделения процессора.

Диск

 

Для разделения дискового пространства используется файловая система. Здесь Windows 3.x просто пользуется уже имеющимся — файловой системой DOS; Windows–95 использует слегка модернизированную файловую систему DOS (поддерживаются имена файлов длиной до 256 символов и возможно использование так называемого FAT32 вместо FAT16 или FAT12). И только Windows NT предоставляет собственную файловую систему — NTFS, хотя может работать и с FAT. NTFS отличается от FAT существенно более сложной организацией, позволяющей создавать единые тома из нескольких дисков, организовывать зеркальные тома или тома с избыточностью для хранения важных данных, а также задавать права доступа к отдельным файлам конкретным пользователям. Естественно, более сложная система оказывается более чувствительной к сбоям (несмотря на специально принятые меры) и менее производительной (несмотря на специальную оптимизацию).

Для доступа к файлам Windows предоставляет свои собственные функции. В случае Windows 3.x эти функции в основном соответствуют функциям DOS для доступа к файлам и разделения доступа. Для нормальной работы Windows надо устанавливать программу SHARE.EXE до запуска Windows 3.1, либо, в случае Windows 3.11, будет использован специальный компонент Windows — VSHARE.386. Более того, по версию Windows 3.0 включительно, имел место любопытный нюанс: Windows имел собственную функцию для открытия файлов (OpenFile), но совершенно не предоставлял средств для чтения/записи — они были просто не декларированы, хотя внутри самого Windows содержались. Программисту рекомендовалось либо применять функции Run–Time библиотеки принятого языка (что можно было делать лишь ограниченно), либо написать свои процедуры на ассемблере. Либо, что делалось гораздо чаще, использовать не декларированные функции Windows для работы с файлами. С тех пор Microsoft просто декларировал эти функции.

Для приложений, работающих в Win32 про функции DOS надо просто забыть — Win32 предоставляет более богатый набор операций над файлами, поддерживает работу с разными файловыми системами[3] а, кроме того, исключает возможность применения прерываний DOS.


Память

 

Реализация методов разделения памяти в Windows API и Win32 API качественно различаются. Для этого придется рассмотреть историю развития диспетчера памяти, что будет сделано позже. Сейчас надо обратить внимание только на некоторые общие идеи разделения памяти.

В обоих API память делится на отдельные блоки. Однако деление осуществляется совершенно разными методами.

 

Windows API

 

Коротко можно отметить, что вся доступная для Windows память называется глобальной (иногда глобальный хип, глобальная куча, global heap). Эта глобальная память делится на отдельные блоки, которые могут быть перемещаемыми в памяти. В виде блоков глобальной памяти в Windows представляются даже программы — в этом случае каждому программному сегменту соответствует один блок глобальной памяти.

Сегмент данных программы, представленный в виде блока глобальной памяти, может содержать свою локальную кучу (локальный хип, local heap). Эта память также может делиться на блоки, называемыми локальными. Термин локальный применяется к памяти, если она принадлежит сегменту данных программы.

Windows предоставляет программные средства для манипуляции с блоками обоих видов — и глобальными, и локальными. Каждый блок может быть фиксированным, перемещаемым или удаляемым в/из памяти. Это обеспечивает возможность как выделения больших непрерывных блоков данных (за счет перемещения других блоков), так и возможность удаления части блоков при недостатке памяти.

Win32 API

 

В Windows–95 и в Windows NT используется так называемая виртуальная память. Для каждого запущенного приложения выделяется собственное адресное пространство, размером 4Г, которым приложение владеет монопольно. В этом пространстве не находится никаких данных или кода других приложений. Таким образом приложения Win32 изолированы друг от друга. Необходимо учесть, что “адресное пространство” не соответствует реально выделяемой памяти — это тот диапазон адресов, в котором может размещаться память, реально выделенная приложению. Очевидно, что из возможных 4Г адресного пространства используются обычно только несколько мегабайт, занимаемые кодом и данными приложения и необходимыми компонентами системы.

Адресное пространство приложения делится на отдельные фрагменты, содержащие код, данные, служебную информацию и пр., необходимые для этого приложения. Однако такое деление статично — перемещение фрагментов в адресном пространстве не происходит. Оптимизация доступа к памяти осуществляется не с помощью перемещения блоков или их удаления, а с помощью механизма отображения виртуального адресного пространства на физически доступную память компьютера (упрощенно можно считать, что виртуальное адресное пространство приложения — это специальный файл подкачки страниц; оперативная память при этом выполняет роль кэша, в котором находятся только активно используемые код и данные).

Помимо этого в адресном пространстве приложения могут выделяться одна или несколько куч (хипов), разделяемых на отдельные блоки. Вот эти–то блоки могут перемещаться внутри своей кучи и даже удаляться из памяти. Сама куча в адресном пространстве приложения перемещаться не будет. Для каждого приложения выделяется по меньшей мере одна куча, называемая стандартной (default heap). Все функции Windows API, работающие с глобальной или локальной кучами перенесены в Win32 API так, что они работают именно с этой стандартной кучей. При этом нет никакой разницы между глобальной и локальной кучами.

Процессор

 

Выше, при рассмотрении разных типов операционных систем, было выделено два “чистых” типа систем: однопользовательские однозадачные и многопользовательские многозадачные. Windows во всех его версиях занимает некоторые промежуточные положения между двумя этими крайними типами. Так версии Windows 3.x приближаются к простейшему типу однопользовательских однозадачных систем (с очень ограниченной реализацией некоторых возможностей как многопользовательской работы, так и многозадачного режима), а наиболее сложная Windows NT является истинно многозадачной системой с развитыми средствами разделения доступа пользователей.

Win32 API

 

В более сложном Win32 API применяется так называемая истинная многозадачность (вытесняющая, preemptive multitasking). В этом случае разделение процессора осуществляется по определенным временным интервалам (квантам времени). Обработка сообщений перестала быть методом разделения процессора, и в процессе обработки сообщения система может передавать управление другим приложениям. Сама же идея применения объектно–ориентированного подхода к окнам осталась неизменной.

Однако надо отметить, что реализация истинной многозадачности оказалась неполной. В рамках Win32 API могут работать как настоящие Win32 приложения, так и их 16ти разрядные собратья, написанные для Windows API. При запуске таких 16ти разрядных приложений под Win32 для них запускается специальная виртуальная 16ти разрядная Windows–машина, причем в Windows–95 для всех 16ти разрядных приложений используется одна общая виртуальная машина. Это значит, что истинная многозадачность реализована только между Win32 приложениями, в то время как 16ти разрядные приложения между собой используют обработку сообщений для разделения отведенного им процессорного времени. В случае Windows NT для каждого 16ти разрядного приложения запускается собственная Windows–машина, что позволяет им разделять процессор общим способом с приложениями Win32.

Истинная многозадачность в Win32 позволила реализовать так называемые многопотоковые приложения (multithread application). При этом выделяют два новых понятия — процесс (proccess) и поток (thread). Процессы в Win32 API примерно эквивалентны приложениям в Windows API. Для каждого процесса выделяются определенные системные ресурсы — адресное пространство, приоритеты и права доступа к разделяемым ресурсам и прочее, но не процессорное время. Процесс только лишь описывает запущенную задачу, как она есть, без непосредственных вычислений. Для разделения процессора используются не процессы, а потоки, которым и выделяется процессорное время. В рамках каждого процесса выделяется свой поток, называемый первичным (primary thread), создаваемый по умолчанию при создании процесса. При необходимости в пределах одного процесса может быть создано много потоков, конкурирующих между собой (и с потоками других процессов) за процессорное время, но не за адресное пространство.

Как написать приложение для Windows

 

Пока мы рассмотрели только основную идею использования сообщений для реализации объектно–ориентированной операционной среды. Сейчас надо перейти к особенностям организации приложения, работающего в такой среде.

Каждое приложение открывает по меньшей мере одно окно (в принципе могут существовать приложения вообще без окон, но как небольшие специализированные процедуры, не требующие никакого управления). Свойства окна определяются процедурой обработки сообщений этого окна. Таким образом, что бы определить свойства нужного окна, надо написать процедуру обработки сообщений, посылаемых этому окну (оконную процедуру или оконную функцию — window procedure, она же процедура обработки сообщений, message handler).

Одна процедура может обслуживать сообщения, посылаемые разным окнам с одинаковыми свойствами. Говорят, что окна, имеющие одну и ту же оконную функцию, принадлежат к одному классу окон. Вы должны эту процедуру зарегистрировать — это называется регистрацией класса окон.

Далее необходимо предусмотреть средства для создания и отображения окна зарегистрированного класса. С таким окном пользователь будет работать — передвигать его по экрану, изменять размеры, вводить текст и т.д. Вам необходимо обеспечить реакцию этого окна (то есть вашего приложения) на действия пользователя. Фактически вы должны запустить механизм, обеспечивающий доставку сообщений, адресованных вашему окну, до получателя — оконной процедуры. Этот механизм должен работать, пока работает ваше приложение. Такой механизм называется циклом обработки сообщений (message loop).

Таким образом вы должны выполнить несколько шагов для создания собственного приложения:

· написать оконную функцию;

· зарегистрировать эту функцию (класс) в Windows, присвоив классу уникальное имя;

· создать окно, принадлежащее данному классу;

· обеспечить работу приложения, организовав цикл обработки сообщений.

Чуть подробнее рассмотрим, что происходит с приложением за время его “жизни” — от запуска до завершения — перед тем, как перейдем к рассмотрению конкретного примера.

 Когда вы запускаете приложения для Windows, система сначала находит исполняемый файл и загружает его в память. После этого приложение осуществляет инициализацию необходимых объектов, регистрирует необходимые ему оконные классы, создает нужные окна. можно считать, что, начиная с этого момента, приложение способно нормально взаимодействовать с пользователем и необходимым образом реагировать на его действия. В это время должен работать цикл обработки сообщений, который будет распределять поступающие сообщения конкретным окнам.

Сообщения, которые будет получать окно, информируют приложение о всех действиях, которые предпринимает пользователь при работе с данным окном. Так, существуют сообщения, информирующие о создании окна, изменении его положения, размеров, вводе текста, перемещении курсора мыши через область окна, выборе пунктов меню, закрытии окна и т.д. Для удобства работы системы все сообщения имеют уникальные номера, по которым определяется назначение этого сообщения; а для удобства разработки приложений для всех сообщений определяются символические названия. Например:

 

#define WM_MOVE  0x0003
#define WM_SIZE     0x0005

 

В большинстве случаев названия сообщений начинаются на WM_, однако названия некоторых сообщений имеют префиксы BM_, EM_, LBM_, CBM_ и другие.

Для начала выделим четыре сообщения, с которыми мы будем знакомится первыми. Это сообщения применяются при создании окна (WM_CREATE), при закрытии[5] (WM_DESTROY и WM_QUIT) и при его перерисовывании (WM_PAINT).

В тот момент, когда приложение создает новое окно, оконная процедура получает специальное сообщение WM_CREATE, информирующее окно о его создании. При этом окно создается с помощью вызова специальной функции (CreateWindow, CreateWindowEx и некоторые другие), которая выполняет все необходимые действия; сообщение при этом имеет лишь “информационный” характер — оно информирует окно о том, что его создают. Однако реальное создание происходит не в обработчике этого сообщения, а в той функции, которую вызвали для создания окна.

На сообщении перерисовки окна WM_PAINT надо остановиться чуть подробнее. Дело в том, что какая–либо часть окна может быть скрыта от пользователя (например, перекрыта другим окном). Далее в процессе работы эта часть может стать видимой, например вследствие перемещения других окон. Сама система при этом не знает, что должно быть нарисовано в этой, ранее невидимой части окна. В этой ситуации приложение вынуждено позаботиться о перерисовке нужной части окна самостоятельно, для чего ему и посылается это сообщение каждый раз, как видимая область окна изменяется.

Когда окно закрывается, оно получает сообщение WM_DESTROY, информирующее о закрытии окна. Как и в случае создания, сообщение о закрытии является информационным; реальное закрытие осуществляется специальной функцией (обычно DestroyWindow), которая, среди прочего, и известит окно о его уничтожении.

Все время, пока пользователь работает с приложением, работает цикл обработки сообщений этого приложения, обеспечивающий доставку сообщений окнам. В конце работы приложения этот цикл, очевидно, должен завершиться. В принципе, можно сделать так, что бы в цикле проверялось наличие окон у приложения. При закрытии всех окон цикл тоже должен завершить свою работу. Однако можно несколько упростить задачу — и в Windows именно так и сделано — вместо проверки наличия окон можно предусмотреть специальный метод завершения цикла при получении последним окном (обычно это главное окно приложения) сообщения о его уничтожении (WM_DESTROY). Для этого применяется специальное сообщение WM_QUIT, которое посылается не какому–либо окну, а всему приложению в целом. При извлечении этого сообщения из очереди цикл обработки сообщений завершается. Для посылки такого сообщения предусмотрена специальная функция — PostQuitMessage.

После завершения цикла обработки сообщений приложение уничтожает оставшиеся ненужные объекты и возвращает управление операционной системе.

Сейчас в качестве примера мы рассмотрим простейшее приложение для Windows, традиционную программу “Hello, world!”. После этого подробнее рассмотрим, как это приложение устроено. Здесь же можно заметить, что при создании практически любых, написанных на “C”, приложений для Windows этот текст может использоваться в качестве шаблона.

Пример 1A — первое приложение

 

Файл 1a.cpp

#define STRICT
#include <windows.h>

#define UNUSED_ARG(arg) (arg)=(arg)
static char szWndClass[] = "test window";

LRESULT WINAPI _export WinProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
UNUSED_ARG(wParam);
UNUSED_ARG(lParam);
PAINTSTRUCT ps;

switch (uMsg) {
case WM_CREATE:
      return 0L;

case WM_PAINT:
      BeginPaint(hWnd, &ps);
      TextOut(ps.hdc, 0, 0, "Hello, world!", 13);
      EndPaint(hWnd, &ps);
      return 0L;

case WM_DESTROY:
      PostQuitMessage(0);
      return 0L;

default:
      break;
}
return DefWindowProc(hWnd, uMsg, wParam, lParam);
}

static BOOL init_instance(HINSTANCE hInstance)
{
WNDCLASS        wc;

wc.style =       0L;
wc.lpfnWndProc = WinProc;
wc.cbClsExtra =   0;
wc.cbWndExtra =      0;
wc.hInstance =     hInstance;
wc.hIcon =            LoadIcon(NULL, IDI_APPLICATION);
wc.hCursor =  LoadCursor(NULL, IDC_ARROW);
wc.hbrBackground = (HBRUSH)(COLOR_WINDOW + 1);
wc.lpszMenuName = NULL;
wc.lpszClassName = szWndClass;
return RegisterClass(&wc) == NULL? FALSE: TRUE;
}

int PASCAL WinMain(HINSTANCE hInst, HINSTANCE hPrevInst, LPSTR lpszCmdLine, int nCmdShow)
{
UNUSED_ARG(lpszCmdLine);
MSG    msg;
HWND hWnd;

if (!hPrevInst) {
      if (!init_instance(hInst)) return 1;
}

hWnd= CreateWindow(
      szWndClass, "window header", WS_OVERLAPPEDWINDOW,
      CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT,
      NULL, NULL, hInst, NULL
);

if (!hWnd) return 1;

ShowWindow(hWnd, nCmdShow);
UpdateWindow(hWnd);

while (GetMessage(&msg, NULL, NULL, NULL)) {
      TranslateMessage(&msg);
      DispatchMessage(&msg);
}

return msg.wParam;
}

 

Рисунок 1. Приложение 1a.cpp в среде Windows 3.x или Windows NT 3.x (слева) или в среде Windows–95 или Windows NT 4.0 (справа).

В зависимости от платформы, на которой запускается это приложение, внешний вид окна может несколько изменяться. Это связано с изменившимся интерфейсом пользователя при переходе от Windows 3.x и Windows NT 3.x к Windows–95 и Windows NT 4.0.

Далее мы рассмотрим исходный текст более подробно. При первом взгляде на него обращают на себя внимание сразу несколько необычных (по сравнению с программами для DOS) вещей:

· новые типы данных

· странные имена переменных

· обилие используемых функций и передаваемых им параметров

Примерно в таком порядке мы и рассмотрим эти вопросы.

Новые типы данных

 

Итак, еще раз рассмотрим первое Windows–приложение (1a.cpp).

Обычно в начале “С”–программы помещается директива препроцессора #include для включения файла, содержащего основные определения и прототипы функций. При написании Windows–приложений вы должны включить файл WINDOWS.H. Этот файл содержит определения типов, констант и функций, используемых в Windows[6].

В приложении перед включением WINDOWS.H определяется специальный символ STRICT:

#define STRICT
#include <windows.h>

Он указывает, что необходимо осуществлять строгую проверку типов. То есть использование вместо переменной одного типа переменной какого–либо другого, даже сходного, типа будет рассматриваться компилятором как ошибка.

Для большей части обычных типов Windows предлагает свои собственные определения — что объясняется возможностью реализации на разных вычислительных платформах и, соответственно, Windows–приложения должны быть переносимыми хотя бы на уровне исходного текста.

Для 16ти и 32х разрядных платформ существенно различаются режимы адресации. Например, для 32х разрядных машин практически не применяются near и far модификаторы адреса (Win32 требует, что бы приложения разрабатывались в 32х разрядной flat–модели памяти, где на все про все отводится один 32х разрядный сегмент, размером до 4Г). Кроме того, стандартом C предполагается, что тип данных int имеет длину одно слово. То есть для 16ти разрядных машин он совпадает с типом short int, а для 32х разрядных с типом long int. Это приводит к частичной непереносимости С–программ с одной платформы на другую.

Из большого количества определяемых типов выделим несколько, с которыми нам придется столкнуться в самом начале. Те, которые мы будем вводить позже, будут объясняться по мере поступления.

 

Новое название Значение для Windows API Значение для Win32 API
Символы (#define) FAR NEAR PASCAL LONG VOID NULL WINAPI CALLBACK far near pascal long void 0 pascal far pascal far pascal long void 0 pascal pascal
Типы (typedef) BOOL BYTE WORD DWORD UINT NPSTR PSTR LPSTR LPCSTR WPARAM LPARAM LRESULT FARPROC HANDLE HFILE HWND HINSTANCE HDC int unsigned char unsigned short int unsigned long int unsigned int char near* char * char far* const char far* UINT LONG LONG (far pascal *)(void) unsigned int HANDLE HANDLE HANDLE HANDLE int unsigned char unsigned short int unsigned long int unsigned int char * char * char * const char * UINT LONG LONG (pascal *)(void) unsigned int HANDLE HANDLE HANDLE HANDLE

 

Практически для всех определенных типов существуют типы “указатель на...”. Ближние указатели строятся с помощью префикса NP, а дальние — LP, указатели, соответствующие принятой модели памяти, строятся с помощью префикса P. Например, BYTE — тип, представляющий отдельный байт, LPBYTE — дальний указатель на байт, а NPBYTE — ближний указатель. Исключение — тип VOID, он имеет только дальний указатель LPVOID.

Внимательнее разберемся с типом HANDLE (и со всеми “производными” от него): Дело в том, что Windows создает специальные структуры данных, описывающих требуемые объекты (например окно). Эта структура данных зачастую принадлежит не вашему приложению, а самой системе. Для того, что бы этот объект можно было идентифицировать, вводится специальное понятие хендл (дескриптор, handle). Хендл в Windows — это просто целое число, иногда номер, присвоенный данному объекту, причем значение NULL указывает на несуществующий объект. Единственное исключение — HFILE, для которого определено специальное значение — HFILE_ERROR, равное -1 (это связано с тем, что хендл файла первоначально был заимствован у DOS, где хендл 0 обозначает стандартное устройство вывода stdout). Понятие хендла в Windows используется очень широко, а для облегчения контроля типов используется большое количество производных от хендла типов.

Win32

 

Здесь же надо еще раз отметить, что для Win32 API всегда применяется 32х разрядная flat–модель памяти. В этом случае модификаторы far и near не применяются. Кроме того хендл, соответствующий типу unsigned int, становится 32х разрядным. Это на самом деле приводит к изрядным сложностям при переходе с платформы на платформу. Дело в том, что в Windows API хендл часто объединяется с какими–либо дополнительными данными и размещается в одном двойном слове, передаваемом в качестве параметра функции или сообщения, а в Win32 такое уже не получится — хендл сам занимает все двойное слово.

Кроме того, в Win32 API для работы с файлами используется опять–таки хендл, но уже не типа HFILE, а HANDLE. При этом нулевое значение по–прежнему является допустимым и обозначает стандартное устройство вывода, а значение -1 — неверный хендл. Для обозначения неверного хендла файла определен символ INVALID_HANDLE_VALUE, равный -1. Для других хендлов, кроме хендлов файлов, этот символ не применяется, так как для индикации ошибки применяется значение 0. При этом тип HFILE и символ HFILE_ERROR определены также, как и в 16ти разрядных Windows — в виде 16ти разрядного целого числа. В принципе допустимо простое приведение типов, однако в будущих реализациях Windows API ситуация может измениться, так как тип HANDLE соответствует 32х разрядному числу.

Венгерская нотация

 

При чтении текстов C—программ и документации Вы обратите внимание на несколько странное написание имен переменных и функций. Например:

lpszFileName, wNameLength

Разработчики Windows рекомендуют применять специфичные правила описания имен переменных, которые получили название “венгерская нотация” по национальности программиста Charles Simonyi из Microsoft, предложившего ее. Применение венгерской нотации улучшает читаемость программ и уменьшает вероятность ошибки. Хотя, конечно, это дается ценой увеличения длины имен переменных.

Хорошим программистским правилом является использование мнемонических имен переменных. Венгерская нотация предполагает не только применение мнемоники для определения смысла переменной (как, например, FileSize), но и включение ее типа в имя. Например lpszFileName обозначает дальний указатель на ASCIIZ[7] строку символов, содержащую имя файла.

Как видно из примера, перед мнемоническим именем переменной пишется небольшой префикс, указывающий ее тип. Каким образом строится префикс? Из небольшой таблицы можно получить представление об обозначении основных типов данных:

 

обозначающий символ название обозначаемого типа пояснение
c char символ
by BYTE байт
n int целое число
x short координата или размер
y short координата или размер
i int целое число
f, b BOOL логическая величина
w WORD слово без знака
h HANDLE хендл
l LONG длинное целое со знаком
dw DWORD длинное целое без знака
e FLOAT число с плавающей запятой
*fn   функция
s   строка
sz   строка, оканчивающаяся '\0' (ASCIIZ)
p * указатель на...
lp far* дальний указатель на...
np near* ближний указатель на...

 

Зная эту таблицу легко самим понять или составить имена переменных в венгерской нотации. Даже если Вы не будете сами применять венгерскую нотацию при написании программ, то знать ее все равно надо, так как она принята во всей документации, сопровождающий Windows. К сожалению даже здесь разработчики оказались не совсем последовательны и Вам придется столкнуться в документации с некорректным (с точки зрения приведенной таблицы) применением венгерской нотации.

Так, в качестве примера можно привести название поля cbWndExtra в структуре WNDCLASS. В данном случае префикс cb расшифровывается как Count of Bytes.


Функция WinMain

 

Обычная программа на C (C++) содержит так называемую главную процедуру main. При создании программ для Windows тоже необходимо описать такую процедуру, правда она называется WinMain и имеет другие аргументы:

 

int PASCAL WinMain(HANDLE hInstance, HANDLE hPrevInstance, LPSTR lpszCmdLine, int nCmdShow)
{
      //...
}

 

Описание главной функции ключевым словом PASCAL указывает на применение соглашений языка Pascal при передаче аргументов и вызове функции (так делается в большинстве функций Windows, потому что вызов pascal–декларированной функции осуществляется чуть быстрее и занимает меньше места, чем C–декларированной).

Рассмотрим ее аргументы:

HANDLE hInstance — этот параметр является хендлом, указывающим конкретную копию приложения. Знание этого хендла потребуется для связи тех или иных данных с конкретной копией.

HANDLE hPrevInstance — описывает хендл предыдущей копии приложения. Если данная копия является первой, то эта переменная содержит NULL. Использование этой информации несколько специфично:

Во–первых, Windows связывает некоторые данные с конкретной копией приложения (например: экспортированные функции, окна и пр.). При связывании необходимо указывать хендл копии приложения.

Внимание: при использовании C++ иногда удобно описать статический объект. Однако в этом случае может потребоваться информация о hInstance для конструктора статического объекта. По странной причине мы ее не можем узнать до вызова WinMain — эта информация известна с самого начала (еще до вызова каких–либо конструкторов): startup–код в самых первых инструкциях обращается к процедуре INITTASK, которая возвращает системную информацию, в том числе hInstance. После этого hInstance копируется в статическую переменную, используемую startup– и exit– кодом, однако эта переменная является локальной (?!) и недоступна для остальных модулей приложения. Причина такого поступка со стороны разработчиков компиляторов остается непонятной.

Во–вторых, некоторые операции должны выполняться только при запуске первой копии приложения, а все остальные копии должны игнорировать эти операции или выполнять вместо них другие. Для пояснения этого обратим внимание на оконную функцию. Когда мы создаем приложение, то мы описываем специфичные оконные функции и регистрируем классы окон. После запуска первой копии (пока она активна) эти классы окон известны Windows. Значит при запуске последующих копий нам не надо их регистрировать.

В–третьих, иногда нам надо получить данные от предыдущей копии приложения (например, если наши приложения организуют обмен данными между собой). С помощью hPrevInstance мы можем сделать это (только в Windows API, в Win32 API это не получится)[8].

В–четвертых, 32х битовые приложения Win32 API всегда предполагают, что запущена только одна копия приложения (так как в виртуальном адресном пространстве приложения кроме нее других приложений, в том числе копий, не находится). При этом hInstance указывает начальный адрес загрузки модуля (и для большинства приложений он совпадает), а hPrevInstance всегда равен NULL.

LPSTR lpszCmdLine — как и обычная C–программа, приложение Windows может получать командную строку. Параметр lpszCmdLine является указателем на эту строку.

int nCmdShow — этот параметр указывает, в каком виде должно быть изображено окно приложения. Для описания значений этой переменной существует целый набор #define’ов, начинающихся с префикса SW_. Например, значение nCmdShow равное SW_SHOWMINNOACTIVE указывает на то, что окно должно быть отображено в минимизированном состоянии, а значение SW_SHOWNORMAL указывает на необходимость отображения окна в нормальном состоянии. Пользователь может указать, в каком виде показывать главное окно приложения, настраивая характеристики ярлыка (shortcut).

Регистрация класса окон

 

После аргументов функции WinMain мы начнем рассматривать непосредственно тело этой процедуры. В самом начале мы должны зарегистрировать класс нашего окна, убедившись в том, что это первая копия приложения. Для этого мы должны заполнить структуру WNDCLASS и передать ее функции RegisterClass:

 

WNDCLASS WC;

if (!hPrevInstance) {
      WC.style=    NULL;
      WC.lpfnWndProc= WinProc;
      WC.cbClsExtra= NULL;
      WC.cbWndExtra= NULL;
      WC.hInstance= hInstance;
      WC.hIcon=    LoadIcon(NULL, IDI_APPLICATION);
      WC.hCursor=  LoadCursor(NULL, IDC_ARROW);
      WC.hbrBackground= GetStockObject(WHITE_BRUSH);
      WC.lpszMenuName= NULL;
      WC.lpszClassName= "Hello application";
      if (!RegisterClass(&WC)) return NULL;
}

 

Эта операция обычно выполняется в отдельной процедуре (init_instance в 1a.cpp) так как структура WNDCLASS используется однократно, только для вызова функции RegisterClass, после чего ее можно не держать в стеке.

Структур


Поделиться с друзьями:

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.113 с.