Давление в жидкости и газе. Расчёт давления жидкости на дно и стенки сосуда. — КиберПедия 

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Давление в жидкости и газе. Расчёт давления жидкости на дно и стенки сосуда.

2020-01-13 607
Давление в жидкости и газе. Расчёт давления жидкости на дно и стенки сосуда. 0.00 из 5.00 0 оценок
Заказать работу

 

Ранее было установлено, что в отличие от твердых тел, жидкости и газы передают производимое на них давление не направленно, а во все стороны.

Благодаря тому, что молекулы в жидкости обладают достаточной подвижностью, то жидкость может принимать форму того сосуда, в который она налита. И если на жидкость действует внешняя сила давления, то, согласно закону Паскаля, жидкость передает созданное этой силой давление во все точки без изменений.

Однако напомним, что закон Паскаля применим только к жидкостям и газам, а в твердых телах подвижность молекул ограничена, и они не подчиняются этому закону.

Рассмотрим опыт с картезианским водолазом. Пусть водолаз находится в высокой стеклянной трубке, заполненной водой. Сверху эта трубка затянута резиновой пленкой. Нажмем пальцем на пленку — водолаз тонет. Отпустим палец — водолаз начинает всплывать. А теперь нажмем еще раз и подождем, чтобы водолаз опустится на самое дно нашей трубочки. Отпустим палец — а водолаз не всплывает, он остался лежать на дне. Это странно, ведь сверху на пленку ничего не давит. Что же тогда удерживает водолаза внизу?

Чтобы водолаз не всплывал, нужно, чтобы воздух внутри него был сжат внешним давлением. Раньше это давление создавалось пальцем. А чем создается это давление теперь?

Над водолазом находится высокий столб воды. Не трудно догадаться, что на воду в трубке, как и на все тела на Земле, будет действовать сила тяжести. Поэтому каждый слой жидкости, налитой в сосуд, своим весом создает давление на другие слои, которое, согласно закону Паскаля, передается по всем направлениям.

Таким образом, жидкость давит на стенки и дно сосуда, а, следовательно, и на нашего водолаза. В том, что жидкость действительно создает давление, можно убедиться, используя эластичный полиэтиленовый пакет или трубку, нижний конец которой закрыт эластичной пленкой. Если постепенно наливать воду в сосуд, то можно обнаружить, что прогиб пленки увеличивается с увеличением количества воды.

Причиной увеличения прогиба является рост давления воды на пленку. Притягиваясь к Земле, жидкость давит своим весом на пленку подобно тому, как давит на стол стопка книг.

Проведем еще один опыт. Возьмем трубку с эластичным дном, в которую уже налита вода, и будем медленно погружать ее в другой, более широкий сосуд с водой. Можно заметить, что по мере опускания трубки ее эластичное дно начнет постепенно выпрямляться. И в тот момент, когда уровни жидкостей в обоих сосудах совпадут, эластичное дно в трубке полностью выпрямится. На основании проделанного опыта мы можем заключить, что силы, которые действуют на эластичную пленку сверху и снизу одинаковы, т.е. равны.

Таким образом, жидкость, благодаря своему притяжению к Земле, способна оказывать давление на дно сосуда. Но только ли на дно? Ведь в любом сосуде, помимо дна, есть еще и боковые стенки. Проведём эксперимент.

Если взять стеклянную трубку, но уже с боковым отверстием, закрытым эластичной пленкой, и также будем наливать в нее воду, то можно увидеть, что боковая мембрана также начала растягиваться.

Если погрузить эту трубку в другой сосуд с водой, то пленка снова выпрямится, как только уровни воды в трубке и сосуде сравняются. Следовательно, вновь силы, действующие на эластичную пленку, одинаковы со всех сторон.

Таким образом, на основании всех проделанных опытов, можно заключить, что внутри жидкости существует давление, которое на одном и том же уровне одинаково по всем направлениям. Однако с глубиной это давление увеличивается. Давление неподвижной жидкости, обусловленное ее весом, называют гидростатическим давлением (от латинских слов «гидрос» — вода, и «статиос» — неподвижный).

Важно отметить, что не только жидкости, но и газы создают данный вид давления, так как они тоже имеют вес. Но стоит помнить, что вес газа, находящегося в сосуде, очень мал, из-за его очень маленькой плотности. Поэтому, во многих случаях его весовое давление не учитывается.

Как можно рассчитать гидростатическое давление? Для этого рассмотрим сосуд, который имеет форму прямоугольного параллелепипеда.

Давление столба жидкости высотой h на дно сосуда с вертикальными стенками и площадью дна S будет определятся по уже известной нам формуле

Силой давления является вес жидкости. А если жидкость неподвижна, то ее вес будет равен силе тяжести.

F д = P = mg

В записанной нами формуле, неизвестной величиной является масса, которую можно определить, как произведение плотности жидкости и ее объема.

m = rV

Считаем, что плотность налитой нами жидкости известна. Объем жидкости можно рассчитать, зная высоту столба жидкости, налитой в сосуд и площадь его дна. Тогда выражение для массы запишется в виде:

m = rSh

Если подставить данное выражение для массы жидкости в формулу давления, то получим формулу, для расчета гидростатического давления

Из формулы видно, что давление жидкости на дно сосуда зависит только от ее плотности и высоты столба жидкости. Следовательно, по этой формуле можно рассчитывать гидростатическое давление жидкости, налитой в сосуд любой формы.

Чтобы проверить это, к нашему прибору с эластичным дном присоединим измерительную систему. При замене цилиндрического сосуда на сосуды разной конической формы, но с одинаковой площадью дна, в которых высоты столбов жидкости будут равные, прибор будет показывать равные силы давления, а значит, и равные давления жидкости на дно всех сосудов, хотя масса жидкости в сосудах разная. Это явление известно в физике под названием гидростатический парадокс, который можно объяснить законом Паскаля.

Рассмотрим сосуд изображённый на рисунке. На площадку MN дна сосуда действует сила, равная весу столба жидкости KLMN, которая производит гидростатическое давление.

По закону Паскаля такое давление передается и на площадку AM, и на площадку NB.

Значит сила, действующая на все дно, будет равна весу вертикального столба жидкости ABCD.

Формула для расчета гидростатического давления позволяет найти давление не только на дно сосуда, но и на его боковые стенки. Проверим это на опыте. Возьмем пластиковую бутылку с проколотыми в стенке отверстиями и нальем в нее подкрашенную воду.

Наблюдение за вытекающими струями показывают, что гидростатическое давление действует и на стенку бутылки, а его величина возрастает с увеличением высоты столба воды. Поэтому самая нижняя струйка воды падает дальше, чем самая верхняя.

Как объяснить происходящее? Для этого мысленно разделим жидкость на слои.

На каждый нижний слой жидкости действует вес верхних слоев. Сила тяжести, действующая на первый слой, прижимает его ко второму, который, в свою очередь, передает производимое на него давление по всем направлениям. На третий слой уже действует вес первого и второго слоя. Значит, давление, оказываемое на третий слой, будет больше, чем давление во втором слое. Таким образом, наибольшим давление будет на дно сосуда и, соответственно, стенку у дна.

Примерно так же в 1648 году рассуждал и Блез Паскаль. Он решил, что если взять тонкую и длинную трубку, то можно совсем небольшим количеством воды создать огромное давление. Для того, чтобы в этом удостоверится, он поместил такую трубку в закрытую со всех сторон бочку с водой. Поднявшись на балкон второго этажа дома, он вылил в узкую трубку несколько кружек воды, и, на удивление собравшихся зевак, давление на стенки бочки так возросло, что клепки бочки разошлись, и вода из бочки стала выливаться.

Упражнения.

Задача 1. Определите дополнительное давление, действующее на ныряльщика на глубине 200 дециметров.

Задача 2. Резиновая камера заполнена водой и соединена со стеклянной трубкой так, как показано на рисунке. На камеру положена доска массой 1 кг и гиря массой 5 кг. Определите площадь доски, если высота столба воды в трубке составляет 1 м.

Наличие гидростатического давления является главным препятствием для проникновения человека в глубины Мирового океана. Ведь уже на глубине 2,5–3 м нетренированный ныряльщик испытывает сильнейшую боль в ушах, вызванную давлением воды на барабанные перепонки. Даже корпуса подводных лодок, изготовленные из самых прочных сплавов металла, на глубине несколько сот метров находятся на грани превышения допустимой прочности. Почему же некоторые виды рыб комфортно себя чувствуют на огромных глубинах (даже на дне Марианской впадины)?

Всё дело в том, что вода давит на рыб не только извне, но и изнутри, что приводит к компенсации сил давления.

Основные выводы:

· Жидкость создает давление за счет своего веса, причем не только на дно сосуда, в котором она находится, но и на его стенки.

· Давление неподвижной жидкости, обусловленное ее весом, называют гидростатическим давлением.

· Давление жидкости на дно сосуда зависит от плотности жидкости и высоты ее столба.

· Гидростатическое давление на боковую стенку сосуда на данной глубине такое же, как и на дно, если бы дно находилось на этой глубине.

 

7.38 Сообщающиеся сосуды и их применение. Устройство шлюзов, водомерного стекла.

 

З акона Паскаля гласит, что жидкость или газ передает производимое на него давление внешней силой по всем направлениям без изменений. Жидкость (или газ) создает давление за счет своего веса. Давление неподвижной жидкости, обусловленное ее весом, называют гидростатическим давлением. На данной глубине оно зависит от плотности жидкости и высоты столба жидкости.

Однако действие на жидкость силы тяжести и подвижность ее молекул приводит к тому, что в широких сосудах поверхность жидкости устанавливается горизонтально.

Поставим опыт. Для этого возьмем широкий сосуд, и нальем туда воды. Поставим его под штатив, в лапке которого зажат прямоугольный треугольник и вертикальный отвес.

Из рисунка видно, основание нашего треугольника располагается параллельно поверхности жидкости. Если наклонить сосуд, то можно увидеть, что вода в нем не наклоняется вместе с ним, а остается в первоначальном положении.

Если взять несколько соединенных между собой открытых сосудов и наливать в один из них воду, то вода начинает перетекать в остальные сосуды и, в конечном итоге, установится во всех сосудах на одном уровне.

Сосуды, которые имеют соединяющую их часть и заполненные покоящейся жидкостью, называютсообщающимися сосудами.

Почему же вода в сообщающихся сосудах всегда устанавливается на одном уровне? Это можно объяснить следующим образом. Рассмотрим ровную горизонтальную поверхность воды, подкрасив часть воды более ярким цветом. Теперь окружим эту подкрашенную воду отдельной оболочкой. Вода внутри оболочки не почувствует никаких изменений и сохранит свой первоначальный уровень. А теперь уберем внешнюю воду и получим обычную картинку сообщающихся сосудов.

Второе доказательство основано на принципе невозможности создания вечного двигателя. Если бы вода в двух сообщающихся сосудах имела различный уровень, можно было бы проделать в стенках сосудов отверстия и пустить стекать воду по желобу из верхнего сосуда в нижний. А обратно эта вода будет возвращаться по нижней трубе. Эта вода могла бы крутить колесо турбины и совершать механическую работу

.       

Третье доказательство. Выделим внутри сообщающихся сосудов тонкий слой жидкости, который, как и вся жидкость, неподвижен.

Следовательно, слева и справа на него действуют одинаковые по модулю, но противоположные по направлению силы — силы давления столбов жидкости.

F д1 = F д2

Для того, чтобы эти силы были равны, необходимо, чтобы были одинаковыми давления, создаваемые левым и правым столбами жидкости, т.е.

p 1 = rgh 1

p 2 = rgh 2

p 1 = p 2

rgh 1 = rgh 2

После математических преобразований получается, что h 1 = h 2.

На основании выше изложенного, можно сформулировать важный закон гидростатики — закон сообщающихся сосудов: в открытых сообщающихся сосудах поверхности однородной жидкости устанавливаются на одинаковом уровне (при условии, что давление воздуха над поверхностью жидкости одинаково).

А что, если налить в сообщающиеся сосуды две разных жидкости, например, ртуть и воду? В этом случае для равновесия тонкого слоя внутри жидкости нужно, чтобы давление, создаваемое ртутным столбиком в левом сосуде, было равно давлению столбика воды и ртути в правом сосуде.

F д1 = F д2

p 1 = r 1 gh 1 + r 1 gh 0

p 2 = r 2 gh 2 + r 2 gh 0

p 1 = p 2

r 1 gh 1 + r 1 gh 0 = r 2 gh 2 + r 2 gh 0

r 1 gh 1 = r 2 gh 2

r 1 h 1 = r 2 h 2

Таким образом, в открытых сообщающихся сосудах высоты столбов несмешивающихся жидкостей над уровнем их раздела обратно пропорциональны плотностям жидкостей.

 

Научное открытие свойств сообщающихся сосудов датируется 1586 годом и связано с именем голландского математика Симона Стевина.

Но оно было известно еще жрецам древней Греции. А вот древнее римляне его не знали. Они для снабжения населения водой возводили многокилометровые акведуки, водопроводы, доставлявшие воду из горных источников. Инженеры древнего Рима опасались, что в водоемах, соединенных очень длинной трубой, вода не сможет установится на одинаковом уровне. Поэтому они обычно придавали водопроводным трубам равномерный уклон вниз на всем их пути. Например, одна из римских труб, Аква Марциа, имеет длину около 100 км между тем как прямое расстояние между ее концами вдвое меньше. 50 км каменной кладки пришлось проложить из-за незнания элементарного закона физики!

 

С сообщающимися сосудами человек встречается постоянно: это чайник, лейки для полива, водомерные трубки (стекла), используемые в больших емкостях с водой или топливом. Сложную систему сообщающихся сосудов используют в дачных поселках и деревнях в башенном водопроводе. Рассмотрим схему простейшего водопровода.

 

Вода из артезианского источника насосами выкачивается из водосборника и подается в отстойник. Отстоявшаяся вода из первого отстойника через систему фильтров подается во второй отстойник. Отстоявшуюся и в этом сосуде, воду перекачивают в промежуточный резервуар. Из промежуточного резервуара с помощью насоса вода поднимается в водонапорную башню. А уже оттуда, под действием сил гидростатического давления и на основании закона сообщающихся сосудов, вода поступает в квартиры домов.

Давление воды в кранах определяется высотой столба воды в водонапорной башне над уровнем крана. Следовательно, чем выше будет башня, тем большее давление воды она будет создавать, а вода сможет достичь и верхних этажей зданий.

Применение закона сообщающихся сосудов нашел и в устройстве судоходных шлюзов на реках и каналах.

Судоходный шлюз — это гидротехническое сооружение на судоходных и водных путях для обеспечения перехода судов из одного водного бассейна в другой с различными уровнями воды в них.

Использование шлюзов главным образом направлено на то, чтобы сделать водные пространства с различными уровнями воды в них более пригодными для судоходства.

Каждый шлюз имеет три главных элемента:

Герметичная камера, соединяющая верхнюю и нижнюю головные части канала и имеющая объём, достаточный для включения в себя одного, или нескольких судов. Положение камеры фиксированное, однако уровень воды в ней может изменяться.

Ворота — металлические щиты, расположенные на обоих концах камеры и служащие для впускания и выпускания судна из камеры перед началом шлюзования и герметизирующие камеру во время шлюзования.

Водопроводное устройство, предназначенное для наполнения, либо опустошения камеры.

Принцип работы шлюза следующий: Входные ворота открываются, и судно заходит внутрь камеры. Входные ворота закрываются. Открывается перепускной клапан, вызывая подъем уровня воды в камере с находящимся в ней судном. Впускные ворота открываются, и судно выходит из камеры.

В случае если судно движется вниз по течению, процесс реверсируется: судно входит в полную камеру, затем открывается клапан, вода из камеры спускается, опуская при этом судно.

Возле города Санкт-Петербурга есть дворцово-парковый ансамбль Петергоф, украшенный прекрасными фонтанами. Как они работают? И почему все 150 фонтанов заповедника работают каждый день, а, например, не менее красивые и величественные фонтаны Версаля, только иногда?

На верхней площадке Большого каскада, где блестят на солнце два тритона, за которыми расположен грот, называемый Верхним или Малым.

Непосредственно за ним располагаются подземелья с массивными кирпичными сводами. В них проходят трубы для фонтанов. Много металлических труб, различного диаметра и цвета. Это сделано для того, чтобы в 18 веке фонтанная команда могла в полутьме подземелья отличать их. В этих трубах и кроется секрет петергофских фонтанов. Они берут воду из единой системы водоснабжения, располагающейся на возвышенности в 20 км от дворца. Благодаря перепаду высот, постепенному сужению труб и закону сообщающихся сосудов, вода под напором и попадает в фонтаны. Поэтому-то фонтаны Петергофа и работают ежедневно.

Самый знаменитый фонтан Петергофа — Самсон, разрывающий пасть льва — построенный в честь победы Петра I над шведами. Его струя бьет вверх на 21 метр без использования какого-либо насоса.


В Версале фонтаны работают от насосов, поэтому их включают только иногда.

Упражнения.

Задача 1. В U-образную трубку сначала налили ртуть, а поверх нее — воду. Рассчитайте разность уровней ртути в левом и правом коленах, если уровень воды в левом колене составляет 40 см, а в правом 67,2 см.

Основные выводы:

· Сообщающиеся сосуды — это сосуды, которые имеют соединяющую их часть и заполненные покоящейся жидкостью.

· В открытых сообщающихся сосудах уровень поверхностей однородной жидкости устанавливается на одинаковом уровне (при условии, что давление воздуха над поверхностью жидкости одинаково) и не зависит от формы сосудов.

· В открытых сообщающихся сосудах высоты столбов несмешивающихся жидкостей над уровнем их раздела обратно пропорциональны плотностям жидкостей.

 

7.39 Вес воздуха. Атмосферное давление. Причина появления атмосферного давления

 

Все без исключения процессы не только живой, но и неживой природы, происходят при участии атмосферы. Она дает дыхание и жизнь всему живому; она с нами при нашем рождении и нашей смерти. Глубокая лазурь южного неба и зеленый блеск полярного сияния; тишина майского вечера и быстрый ураган; обжигающий самум и прохладный ветер, несущий дождь — все это родится в атмосфере и атмосферой.

Известно, что жидкость имеет вес. Все ощущали вес, держа в руке ведро воды, бутылку масла или напитка.

Однако мы не чувствуем изменения веса футбольного мяча при его накачивании воздухом. Почему?

Для ответа на этот вопрос обратимся к таблице плотностей жидкостей и газов. Если сравнить плотность воды и плотность воздуха, то можно заметить, что плотность воздуха почти в 800 раз меньше плотности воды.

 

Так вот, расчеты показывают, что, например, в сильно накаченном мяче вес воздуха находится в пределах 0,1 Н, а его масса составляет около 10 г. Человек, при дыхании за сутки пропускает через себя порядка 20 — 30 кг воздуха, что не так уж и мало.

Покажем на опыте наличие у воздуха массы, а, следовательно, и веса. Для этого возьмем прочный стеклянный шар, заполненный воздухом, и уравновесим его на весах.

Теперь откачаем из шара насосом воздух и взвесим его повторно. Как видно из рисунка, он стал легче.

Добавляя на чашку весов с сосудом разновес, можно узнать массу откачанного воздуха и, соответственно, его вес.

Воздушный слой, окружающий нашу Землю, называют атмосферой (от греческого атмос — пар, воздух, и сфера — шар). Она тоже имеет вес. Молекулы земной атмосферы, если бы на них не действовала сила тяжести, двигаясь хаотично, давно покинули бы нашу планету. Но тяготение Земли стремится расположить их у поверхности, в результате чего молекулы газов «парят» в пространстве вокруг Земли, тем самым, создавая атмосферу нашей планеты. Расчеты показывают, что плотность воздушной оболочки нашей планеты весьма не однородна и заметно убывает с высотой.

Так, на высоте 5,5 км плотность воздуха уже в два раза меньше, чем у поверхности Земли. На высоте 40 км она равна 0,004 кг/м3, а на высоте в 400 км, где летают спутники, об атмосфере можно говорить лишь условно, так как ее плотность очень маленькая — около 3×10–12 кг/м3.


Поделиться с друзьями:

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.066 с.