Способы уменьшения и увеличения давления. — КиберПедия 

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Способы уменьшения и увеличения давления.

2020-01-13 662
Способы уменьшения и увеличения давления. 0.00 из 5.00 0 оценок
Заказать работу

Упражнения.

Задача 1. Если человек и гусеничный трактор оказывают одинаковое давление на почву, то почему трактор, наехав на кирпич, сломает его, а человек, встав на кирпич, не повредит ему?

Решение:

Человек и трактор давят на почву одинаково.

p т = p ч

Это происходит, потому что отношение веса трактора к площади его гусениц равно отношению веса человека к площади его ступней.

P Т / S Г = P Ч / S С

Однако когда трактор наезжает на кирпич, следует брать в расчет не площадь гусениц трактора, а площадь кирпича, на которую трактор действует всем своим весом. Естественно, при этом развивается многократно большее давление, чем под действием веса человека. Если же выложить трактору полосу из кирпичей, то его вес распределится равномерно по нескольким кирпичам и давление уменьшится.

p тp ч

P Т / S ГP Ч / S С

Задача 2. На обочине стоит припаркованный автомобиль. Площадь части шины, соприкасающейся с дорожным покрытием, равна 0,07 м2. Рядом стоит точно такой же автомобиль, с более широкими шинами, так что площадь части шины, соприкасающейся с дорожным покрытием, равна 0,077 м2. Во сколько раз давление, оказываемое первым автомобилем на почву, больше, чем давление, оказываемое вторым автомобилем?

Основные выводы:

· Давление – это физическая величина, равная отношению силы, действующей перпендикулярно поверхности, к площади этой поверхности.

· Для увеличения давления на опору, необходимо либо увеличить силу, либо уменьшить площадь опоры.

· Для уменьшения давления на опору, необходимо, либо уменьшить силу, либо увеличить площадь опоры.

· Уменьшение и увеличение давления часто используется людьми на практике.

 

7.35 Давление газа

 

В газах молекулы расположены друг от друга на большом расстоянии, поэтому, силы взаимного притяжения между молекулами практически отсутствуют. Известно также, что газы легко сжимаются. Молекулы газа двигаются беспорядочно, занимая весь предоставленный им объём. Молекулы сталкиваются не только друг с другом, но и ударяются о стенки сосуда. Именно эти удары и создают давление. Сила удара одной молекулы ничтожно мала, но ведь количество молекул даже в маленьком сосуде очень велико.

Рассмотрим классический опыт: возьмем завязанный шарик с небольшим количеством воздуха и накроем его стеклянным сосудом. Если выкачать из сосуда воздух, то объём воздушного шарика увеличится. Почему же это произошло? Дело в том, что изначально по шарику ударяли молекулы воздуха внутри сосуда, противодействуя ударам молекул внутри шарика. Таким образом, оболочка шарика сохраняла свой объём. Но когда воздух был откачен из сосуда, во много раз уменьшилось количество молекул воздуха внутри него. Ударов по шарику снаружи стало гораздо меньше, но вот количество молекул внутри шарика не изменилось. Это позволило газу внутри шарика расширяться до тех пор, пока давление газа внутри не стало равно давлению газа снаружи. Из этого можно сделать вывод, что при увеличении объёма, давление газа уменьшается. Но если мы вновь наполним сосуд воздухом, то шарик снова сдуется. Значит, при уменьшении объёма, давление увеличивается.

Следует понимать, что эти утверждения верны только в том случае, если речь идет о неизменной массе газа, находящейся при неизменной температуре. Также следует отметить: когда воздух был откачен из сосуда, форма шарика действительно стала шарообразной (а не вытянутой, как это было изначально). Это значит, что газ давит на оболочку шарика (или стенки сосуда) одинаково по всем направлениям. Это объясняется беспорядочным движением молекул. Они двигаются в случайных направлениях, но их число настолько велико, что можно с уверенностью сказать, что во всех направлениях летит одинаковое число молекул. В результате этого на каждый маленький кусочек площади поверхности шарика приходится одинаковое число ударов, то есть, создается одинаковое давление.

Проведем еще один опыт: возьмем цилиндр с подвижным поршнем и поместим туда некоторое количество газа.

Если поршень будет двигаться, то можно изменять объём газа, при этом сохраняя его массу. Таким образом, плотность газа увеличиться, то есть на единицу объёма будет приходиться большее число молекул газа. В этом случае, они значительно чаще будут ударяться о стенки сосуда. То есть, таким способом можно увеличить давление. Это еще раз доказывает, что при уменьшении объёма газа постоянной массы и температуры, давление увеличивается, а при увеличении объёма – давление уменьшается.

Если плотно закрыть пластиковую бутылку и сжать её, то можно почувствовать значительное сопротивление – молекулы газа будут давить на стенки бутылки изнутри, не давая вам сжать её.

Поставим опыт: Не будем изменять ни массу газа, ни его объём, а просто нагреем газ в плотно закрытом сосуде. В этом случае давление газа увеличится. Это объясняется тем, что при увеличении температуры, молекулы газа начинают двигаться быстрее, а, следовательно, будут чаще ударяться о стенки сосуда. То есть, при увеличении температуры газа постоянной массы и объёма, давление газа увеличивается, и, наоборот, при уменьшении температуры, давление газа уменьшается. Если слегка заткнуть стеклянную бутылку пробкой и нагреть бутылку, то пробка выскочит из горлышка под давлением газа.

 

Зависимость давления газа от температуры нередко используется людьми. Например, чтобы поместить большое количество газа в сравнительно небольшой объём, газ охлаждают и закачивают в баллон. После того, как газ вновь нагревается, в баллоне создается очень высокое давление. Именно поэтому на таких баллонах, как правило, пишут предупреждения о том, чтобы баллон ни в коем случае не нагревали и не ударяли (это может привести к взрыву – настолько в баллоне высокое давление).

Примеров давления газа можно привести очень много: это и накачанный мяч, и накачанные шины автомобиля, и атмосферное давление.

Упражнения:

Упражнение 1. Из баллона медленно выпустили половину газа и снова закрыли его. Как изменится давление в баллоне?

Решение:

Поскольку молекул газа внутри баллона стало вдвое меньше, они вдвое меньше стали ударяться о стенки баллона. Следовательно, давление уменьшилось вдвое.

Упражнение 2. Одинаковые массы одного и того же газа находятся в двух баллонах: зеленом и синем. Известно, что температура и в том, и в другом баллоне одинакова. В каком баллоне давление будет больше?

Решение:

По условию задачи, в обоих баллонах одинаковые условия. Из рисунка явно видно, что синий баллон больше зеленого. Поэтому давление в нем будет меньше, поскольку молекулы газа меньше будут ударяться о его стенки.

Упражнение 3. Воздушный шарик завязали и облили его ледяной водой. Из-за этого шарик немного сжался. Можете ли вы объяснить, почему это произошло?

Решение:

Из-за понижения температуры, давление внутри шарика уменьшилось. В результате внешнее давление сжимало шарик до тех пор, пока внутреннее давление вновь ни стало равным внешнему.

Основные выводы:

· Давление газа – это давление, которое создается в результате ударов молекул о стенки сосуда (или о какое-то другое тело).

· Давление газа одинаково по всем направлениям.

· При неизменной массе и температуре, давление газа тем больше, чем меньше его объём. И, наоборот, давление газа тем меньше, чем больше объём.

· При постоянной массе и объёме, давление можно изменить, изменяя температуру. При нагревании газа, его давление будет увеличиваться, а при охлаждении – наоборот, уменьшаться.

 

7.36 Передача давления жидкостями и газами. Закон Паскаля

 

 

В прошлой теме говорилось о давлении газа. Было установлено, что давление газа возникает в результате ударов молекул газа о стенки сосуда. При постоянной массе и температуре давление газа уменьшается, если увеличивается объём. И наоборот, давление газа увеличивается, если уменьшается объём. При неизменной массе и постоянном объёме, давление газа можно увеличить, если нагреть его. И, наоборот, при понижении температуры, давление газа уменьшается.

Давление газа передается по всем направлениям. То же самое можно сказать и о жидкостях. Дело в том, что в жидкостях и газах слои молекул могут свободно перемещаться. Как же передается давление? Рассмотрим сосуд с подвижным поршнем.

Газ стремится заполнить весь объём сосуда, и молекулы газа распределены равномерно по всему объёму. Когда мы заставляем поршень войти в сосуд, слои молекул, находящиеся непосредственно под поршнем сблизятся друг с другом. В этом месте частицы будут расположены более плотно. Однако, вследствие беспорядочного движения молекул, очень скоро они снова распределятся по сосуду равномерно. Давление будет больше прежнего, т.к. уменьшился объём. Таким образом, давление передалось всем частицам газа (или жидкости). То есть, при увеличении давления возле поршня на один паскаль, давление очень быстро увеличивается внутри самого газа также на один паскаль. Из-за этого на один паскаль увеличится давление на стенки сосуда на его дно и на сам поршень.

Впервые это заметил и доказал опытным путем ученый Блез Паскаль, который сформулировал следующий закон: давление, производимое на жидкость или газ, передается в любую точку без изменений во всех направлениях. Теперь можно объяснить следующие опыты. Возьмём бутылку с водой и сделаем несколько маленьких отверстий с помощью иголки.

Если теперь сжать бутылку, то вода польется изо всех отверстий. Этот результат можно наблюдать, если в бутылке будет не вода, а воздух: при нажатии на бутылку, воздух также пойдет изо всех отверстий.

Справедливость закона Паскаля, подтверждается на повседневном опыте. Каждый день люди чистят зубы и для этого, выдавливают зубную пасту из тюбика (зубную пасту можно расценивать как жидкость с высокой плотностью).

При нажатии на тюбик, в каком угодно месте, давление, которое было создано, все равно передается по всем направлениям, в результате чего, часть пасты выходит из тюбика.

Закон паскаля широко используется людьми. В автобусах или троллейбусах с помощью пневматических установок закрываются и открываются двери. Работа этих установок основана на законе Паскаля. Именно на основе закона Паскаля работают водомёты и опрыскиватели.

В шлангах вода находится под давлением. Как только человек открывает кран, оттуда выбрасывается струя воды. В некоторых водометах вода находится под огромным давлением – около 1 ГПа (гигапаскаля). Выбрасываемая струя воды может раздробить горные породы или даже пробить отверстие в металле.

На законе Паскаля основана работа такой установки, как гидравлический пресс.


Он состоит из двух сообщающихся цилиндров с поршнями разного диаметра. Цилиндры заполняются водой (или другой подходящей жидкостью). К поршню с меньшей площадью прикладывается некоторое усилие. В результате, под поршнем возникает давление, которое тут же передается по всем направлениям без изменений. Таким образом, под вторым поршнем создается такое же давление, как и под первым поршнем. Поскольку площадь второго поршня больше, этот поршень сможет развить большее усилие.

Упражнения:

Задача 1. Известно, что если выстрелить в вареное яйцо из мелкокалиберной винтовки, то пуля пробьёт отверстие в яйце. Если же выстрелить в сырое яйцо, то оно разлетится. Как вы думаете, почему так происходит?

Решение:

Вареное яйцо является твердым телом, и в нем давление передается по направлению силы. А вот в жидкостях давление передается по всем направлениям. Поскольку сила, с которой пуля ударила в яйцо, очень велика, в яйце создалось огромное давление, которое его разорвало изнутри.

Задача 2. На поршень гидравлического пресса, площадь которого равна 0,7 м2, положили груз массой 20 кг. Какую силу разовьёт второй поршень, если его площадь равна 2,1 м2?

Основные выводы:

Закон Паскаля: давление, производимое на жидкость или газ, передается в любую точку без изменений во всех направлениях.

 

Упражнения.

Задача 1. Определите дополнительное давление, действующее на ныряльщика на глубине 200 дециметров.

Задача 2. Резиновая камера заполнена водой и соединена со стеклянной трубкой так, как показано на рисунке. На камеру положена доска массой 1 кг и гиря массой 5 кг. Определите площадь доски, если высота столба воды в трубке составляет 1 м.

Наличие гидростатического давления является главным препятствием для проникновения человека в глубины Мирового океана. Ведь уже на глубине 2,5–3 м нетренированный ныряльщик испытывает сильнейшую боль в ушах, вызванную давлением воды на барабанные перепонки. Даже корпуса подводных лодок, изготовленные из самых прочных сплавов металла, на глубине несколько сот метров находятся на грани превышения допустимой прочности. Почему же некоторые виды рыб комфортно себя чувствуют на огромных глубинах (даже на дне Марианской впадины)?

Всё дело в том, что вода давит на рыб не только извне, но и изнутри, что приводит к компенсации сил давления.

Основные выводы:

· Жидкость создает давление за счет своего веса, причем не только на дно сосуда, в котором она находится, но и на его стенки.

· Давление неподвижной жидкости, обусловленное ее весом, называют гидростатическим давлением.

· Давление жидкости на дно сосуда зависит от плотности жидкости и высоты ее столба.

· Гидростатическое давление на боковую стенку сосуда на данной глубине такое же, как и на дно, если бы дно находилось на этой глубине.

 

7.38 Сообщающиеся сосуды и их применение. Устройство шлюзов, водомерного стекла.

 

З акона Паскаля гласит, что жидкость или газ передает производимое на него давление внешней силой по всем направлениям без изменений. Жидкость (или газ) создает давление за счет своего веса. Давление неподвижной жидкости, обусловленное ее весом, называют гидростатическим давлением. На данной глубине оно зависит от плотности жидкости и высоты столба жидкости.

Однако действие на жидкость силы тяжести и подвижность ее молекул приводит к тому, что в широких сосудах поверхность жидкости устанавливается горизонтально.

Поставим опыт. Для этого возьмем широкий сосуд, и нальем туда воды. Поставим его под штатив, в лапке которого зажат прямоугольный треугольник и вертикальный отвес.

Из рисунка видно, основание нашего треугольника располагается параллельно поверхности жидкости. Если наклонить сосуд, то можно увидеть, что вода в нем не наклоняется вместе с ним, а остается в первоначальном положении.

Если взять несколько соединенных между собой открытых сосудов и наливать в один из них воду, то вода начинает перетекать в остальные сосуды и, в конечном итоге, установится во всех сосудах на одном уровне.

Сосуды, которые имеют соединяющую их часть и заполненные покоящейся жидкостью, называютсообщающимися сосудами.

Почему же вода в сообщающихся сосудах всегда устанавливается на одном уровне? Это можно объяснить следующим образом. Рассмотрим ровную горизонтальную поверхность воды, подкрасив часть воды более ярким цветом. Теперь окружим эту подкрашенную воду отдельной оболочкой. Вода внутри оболочки не почувствует никаких изменений и сохранит свой первоначальный уровень. А теперь уберем внешнюю воду и получим обычную картинку сообщающихся сосудов.

Второе доказательство основано на принципе невозможности создания вечного двигателя. Если бы вода в двух сообщающихся сосудах имела различный уровень, можно было бы проделать в стенках сосудов отверстия и пустить стекать воду по желобу из верхнего сосуда в нижний. А обратно эта вода будет возвращаться по нижней трубе. Эта вода могла бы крутить колесо турбины и совершать механическую работу

.       

Третье доказательство. Выделим внутри сообщающихся сосудов тонкий слой жидкости, который, как и вся жидкость, неподвижен.

Следовательно, слева и справа на него действуют одинаковые по модулю, но противоположные по направлению силы — силы давления столбов жидкости.

F д1 = F д2

Для того, чтобы эти силы были равны, необходимо, чтобы были одинаковыми давления, создаваемые левым и правым столбами жидкости, т.е.

p 1 = rgh 1

p 2 = rgh 2

p 1 = p 2

rgh 1 = rgh 2

После математических преобразований получается, что h 1 = h 2.

На основании выше изложенного, можно сформулировать важный закон гидростатики — закон сообщающихся сосудов: в открытых сообщающихся сосудах поверхности однородной жидкости устанавливаются на одинаковом уровне (при условии, что давление воздуха над поверхностью жидкости одинаково).

А что, если налить в сообщающиеся сосуды две разных жидкости, например, ртуть и воду? В этом случае для равновесия тонкого слоя внутри жидкости нужно, чтобы давление, создаваемое ртутным столбиком в левом сосуде, было равно давлению столбика воды и ртути в правом сосуде.

F д1 = F д2

p 1 = r 1 gh 1 + r 1 gh 0

p 2 = r 2 gh 2 + r 2 gh 0

p 1 = p 2

r 1 gh 1 + r 1 gh 0 = r 2 gh 2 + r 2 gh 0

r 1 gh 1 = r 2 gh 2

r 1 h 1 = r 2 h 2

Таким образом, в открытых сообщающихся сосудах высоты столбов несмешивающихся жидкостей над уровнем их раздела обратно пропорциональны плотностям жидкостей.

 

Научное открытие свойств сообщающихся сосудов датируется 1586 годом и связано с именем голландского математика Симона Стевина.

Но оно было известно еще жрецам древней Греции. А вот древнее римляне его не знали. Они для снабжения населения водой возводили многокилометровые акведуки, водопроводы, доставлявшие воду из горных источников. Инженеры древнего Рима опасались, что в водоемах, соединенных очень длинной трубой, вода не сможет установится на одинаковом уровне. Поэтому они обычно придавали водопроводным трубам равномерный уклон вниз на всем их пути. Например, одна из римских труб, Аква Марциа, имеет длину около 100 км между тем как прямое расстояние между ее концами вдвое меньше. 50 км каменной кладки пришлось проложить из-за незнания элементарного закона физики!

 

С сообщающимися сосудами человек встречается постоянно: это чайник, лейки для полива, водомерные трубки (стекла), используемые в больших емкостях с водой или топливом. Сложную систему сообщающихся сосудов используют в дачных поселках и деревнях в башенном водопроводе. Рассмотрим схему простейшего водопровода.

 

Вода из артезианского источника насосами выкачивается из водосборника и подается в отстойник. Отстоявшаяся вода из первого отстойника через систему фильтров подается во второй отстойник. Отстоявшуюся и в этом сосуде, воду перекачивают в промежуточный резервуар. Из промежуточного резервуара с помощью насоса вода поднимается в водонапорную башню. А уже оттуда, под действием сил гидростатического давления и на основании закона сообщающихся сосудов, вода поступает в квартиры домов.

Давление воды в кранах определяется высотой столба воды в водонапорной башне над уровнем крана. Следовательно, чем выше будет башня, тем большее давление воды она будет создавать, а вода сможет достичь и верхних этажей зданий.

Применение закона сообщающихся сосудов нашел и в устройстве судоходных шлюзов на реках и каналах.

Судоходный шлюз — это гидротехническое сооружение на судоходных и водных путях для обеспечения перехода судов из одного водного бассейна в другой с различными уровнями воды в них.

Использование шлюзов главным образом направлено на то, чтобы сделать водные пространства с различными уровнями воды в них более пригодными для судоходства.

Каждый шлюз имеет три главных элемента:

Герметичная камера, соединяющая верхнюю и нижнюю головные части канала и имеющая объём, достаточный для включения в себя одного, или нескольких судов. Положение камеры фиксированное, однако уровень воды в ней может изменяться.

Ворота — металлические щиты, расположенные на обоих концах камеры и служащие для впускания и выпускания судна из камеры перед началом шлюзования и герметизирующие камеру во время шлюзования.

Водопроводное устройство, предназначенное для наполнения, либо опустошения камеры.

Принцип работы шлюза следующий: Входные ворота открываются, и судно заходит внутрь камеры. Входные ворота закрываются. Открывается перепускной клапан, вызывая подъем уровня воды в камере с находящимся в ней судном. Впускные ворота открываются, и судно выходит из камеры.

В случае если судно движется вниз по течению, процесс реверсируется: судно входит в полную камеру, затем открывается клапан, вода из камеры спускается, опуская при этом судно.

Возле города Санкт-Петербурга есть дворцово-парковый ансамбль Петергоф, украшенный прекрасными фонтанами. Как они работают? И почему все 150 фонтанов заповедника работают каждый день, а, например, не менее красивые и величественные фонтаны Версаля, только иногда?

На верхней площадке Большого каскада, где блестят на солнце два тритона, за которыми расположен грот, называемый Верхним или Малым.

Непосредственно за ним располагаются подземелья с массивными кирпичными сводами. В них проходят трубы для фонтанов. Много металлических труб, различного диаметра и цвета. Это сделано для того, чтобы в 18 веке фонтанная команда могла в полутьме подземелья отличать их. В этих трубах и кроется секрет петергофских фонтанов. Они берут воду из единой системы водоснабжения, располагающейся на возвышенности в 20 км от дворца. Благодаря перепаду высот, постепенному сужению труб и закону сообщающихся сосудов, вода под напором и попадает в фонтаны. Поэтому-то фонтаны Петергофа и работают ежедневно.

Самый знаменитый фонтан Петергофа — Самсон, разрывающий пасть льва — построенный в честь победы Петра I над шведами. Его струя бьет вверх на 21 метр без использования какого-либо насоса.


В Версале фонтаны работают от насосов, поэтому их включают только иногда.

Упражнения.

Задача 1. В U-образную трубку сначала налили ртуть, а поверх нее — воду. Рассчитайте разность уровней ртути в левом и правом коленах, если уровень воды в левом колене составляет 40 см, а в правом 67,2 см.

Основные выводы:

· Сообщающиеся сосуды — это сосуды, которые имеют соединяющую их часть и заполненные покоящейся жидкостью.

· В открытых сообщающихся сосудах уровень поверхностей однородной жидкости устанавливается на одинаковом уровне (при условии, что давление воздуха над поверхностью жидкости одинаково) и не зависит от формы сосудов.

· В открытых сообщающихся сосудах высоты столбов несмешивающихся жидкостей над уровнем их раздела обратно пропорциональны плотностям жидкостей.

 

7.39 Вес воздуха. Атмосферное давление. Причина появления атмосферного давления

 

Все без исключения процессы не только живой, но и неживой природы, происходят при участии атмосферы. Она дает дыхание и жизнь всему живому; она с нами при нашем рождении и нашей смерти. Глубокая лазурь южного неба и зеленый блеск полярного сияния; тишина майского вечера и быстрый ураган; обжигающий самум и прохладный ветер, несущий дождь — все это родится в атмосфере и атмосферой.

Известно, что жидкость имеет вес. Все ощущали вес, держа в руке ведро воды, бутылку масла или напитка.

Однако мы не чувствуем изменения веса футбольного мяча при его накачивании воздухом. Почему?

Для ответа на этот вопрос обратимся к таблице плотностей жидкостей и газов. Если сравнить плотность воды и плотность воздуха, то можно заметить, что плотность воздуха почти в 800 раз меньше плотности воды.

 

Так вот, расчеты показывают, что, например, в сильно накаченном мяче вес воздуха находится в пределах 0,1 Н, а его масса составляет около 10 г. Человек, при дыхании за сутки пропускает через себя порядка 20 — 30 кг воздуха, что не так уж и мало.

Покажем на опыте наличие у воздуха массы, а, следовательно, и веса. Для этого возьмем прочный стеклянный шар, заполненный воздухом, и уравновесим его на весах.

Теперь откачаем из шара насосом воздух и взвесим его повторно. Как видно из рисунка, он стал легче.

Добавляя на чашку весов с сосудом разновес, можно узнать массу откачанного воздуха и, соответственно, его вес.

Воздушный слой, окружающий нашу Землю, называют атмосферой (от греческого атмос — пар, воздух, и сфера — шар). Она тоже имеет вес. Молекулы земной атмосферы, если бы на них не действовала сила тяжести, двигаясь хаотично, давно покинули бы нашу планету. Но тяготение Земли стремится расположить их у поверхности, в результате чего молекулы газов «парят» в пространстве вокруг Земли, тем самым, создавая атмосферу нашей планеты. Расчеты показывают, что плотность воздушной оболочки нашей планеты весьма не однородна и заметно убывает с высотой.

Так, на высоте 5,5 км плотность воздуха уже в два раза меньше, чем у поверхности Земли. На высоте 40 км она равна 0,004 кг/м3, а на высоте в 400 км, где летают спутники, об атмосфере можно говорить лишь условно, так как ее плотность очень маленькая — около 3×10–12 кг/м3.

Упражнения.

Задача 1. Кубик с ребром, равным 50 мм и массой 900 г лежит на дне сосуда, в который налита вода на высоту 15 см. Определите вертикальную силу, которую надо приложить в центре верхней грани кубика, чтобы оторвать его от дна. Считайте, что вода не проникает под кубик. Атмосферное давление равно 101 кПа, а коэффициент g примите равным 10 Н/кг.

Основные выводы:

· Газы обладают массой и весом.

· Земная атмосфера обладает весом вследствие действия на нее притяжения Земли, и, следовательно, и производит давление, которое называется атмосферным давлением.

· Действие силы тяжести и хаотичное движение молекул воздуха приводит к тому, что плотность земной атмосферы неодинакова и сильно зависит от высоты.

 

7.40 Измерение атмосферного давления

 

Ранее говорилось о том, что подобно твердым телам и жидкостям, газы также обладают массой и, соответственно, весом. Планету Земля окружает невидимая газовая оболочка, которая называется атмосферой. Земная атмосфера также обладает весом вследствие действия на нее притяжения Земли, а, следовательно, производит давление, которое называется атмосферным давлением.

Каким способом можно рассчитать атмосферное давление? Формулой для вычисления гидростатического давления здесь пользоваться нельзя, так как для такого расчета требуется знать высоту атмосферы и ее плотность. Действие силы тяжести и хаотичное движение молекул воздуха приводит к тому, что плотность земной атмосферы неодинакова и сильно зависит от высоты.

Измерить атмосферное давление можно. Рассмотрим насос – это прибор с помощью которого в дачных поселках добывают из-под земли воду. С древних времен и почти до середины 17 века многими учеными считалось непререкаемым утверждение древнегреческого учёного Аристотеля о том, что подъем воды в насосе вслед за поршнем происходит из-за того, что «природа боится пустоты».

В 1638 году герцог Тосканский решил украсить сады Флоренции великолепными фонтанами, что и было поручено сделать итальянским инженерам. При помощи всасывающих насосов им предстояло поднимать воду на достаточно большие высоты. Однако сделать им этого не удалось. Оказалось, что вода, засасываемая насосами, отказывалась подниматься выше 18 итальянских локтей (что примерно составляет 10,3 м). После многочисленных попыток как-то все исправить, недоумевающие инженеры обратились за помощью к престарелому Галилео Галилею. Великий ученый не смог объяснить этого явления и лишь пошутил: «вероятно, природа действительно не любит пустоты, но лишь до определенного предела».

После смерти Галилея этим вопросом занялись два его ученика — Торричелли и Вивиани.

Рассмотрим наиболее важный из опытов, проведенный в 1643 году Эванджелиста Торричелли. Для опыта он предложил использовать метровую трубку, запаянную с одного конца, наполненную ртутью. Верхний конец трубки закрывался. Трубка переворачивалась и опускалась в широкий сосуд с ртутью, после чего пробка убиралась. При этом часть ртути вытекала из трубки в сосуд, а в трубке оставался столбик ртути высотой около 760 миллиметров.

Но что же удерживало от вытекания оставшуюся в трубке ртуть? Торричелли рассуждал так. Широкий сосуд и трубка — это сообщающиеся сосуды. Над ртутью в трубке нет воздуха. А на ртуть в широком сосуде действует атмосферное давление, которое жидкая ртуть передает по всем направлениям, в том числе и вверх. Сила этого давления и поддерживает ртутный столбик.

Рассмотрим условие равновесия тонкого слоя ртути. Это условие требует, чтобы сила атмосферного давления снизу и сила гидростатического давления столба ртути сверху были равны.

p атм = p гидр

Это значит, что атмосферное давление равно гидростатическому давлению столба ртути в трубке. Поэтому, измерив высоту столба ртути, можно рассчитать его давление по формуле и тем самым определить величину атмосферного давления. Таким образом, Торричелли делает важный вывод о том, что «истинной причиной поднятия воды в трубке является давление воздуха, а не «боязнь пустоты».


В конце 1646 года до французского городка Руана, где в то время жил Блез Паскаль, докатилась молва об удивительных итальянских опытах с пустотой. Паскаль повторяет опыты Торричелли не только с ртутью, но и с водой, маслом, и даже красным вином, для чего ему потребовались трубки длиной около 15 метров. Причем все свои опыты Паскаль проводил прямо на улицах Руаны, тем самым радуя его жителей. Но для полного доказательства существования атмосферного давления этого Паскалю было не достаточно. Он считал, что для полного доказательства опыт следует повторить, причем два раза — один раз у подножия какой-нибудь горы, а второй раз — на ее вершине.

«Вы понимаете, если бы высота столба ртути на вершине горы оказалась бы ниже, чем у подножия, то следовало бы, что единственная причина этого — вес воздуха, а не «боязнь природой пустоты». Ясно, что внизу горы воздух должен быть плотнее, чем наверху, между тем нет никаких оснований предполагать, что природа испытывала большую боязнь высоты внизу, чем вверху». В 1648 году по поручению ученого такой эксперимент был проделан его учеником. Он полностью подтвердил предположение Паскаля о том, что атмосферное давление зависит от высоты. Так, при высоте горы в 1,5 км разница уровней ртути составила более 8 см. Таким образом, опыты Паскаля окончательно опровергли теорию Аристотеля о «боязни природой пустоты» и подтвердили существование атмосферного давления.

Так как в рассмотренных опытах Торричелли и Паскаля давление определялось высотой столба ртути, то понятно, почему его очень часто измеряют не в международных единицах — паскалях, а в миллиметрах ртутного столба.

Выразим в паскалях внесистемную единицу давления 1 миллиметр ртутного столба.

p = rgh

p 1 мм рт. ст. = 13 600×9,81×0,001

p 1 мм рт. ст. ≈ 133,3 Па

В настоящее время, по договоренности атмосферное давление считают нормальным, если оно равно давлению столба ртути высотой 760 мм при температуре воздуха 20 ºС. Такое давление часто называют 1 нормальной, или физической атмосферой. В международных единицах измерения оно составляет 101 325 Па.

Упражнения.

Задача 1. Определите высоту столба ртути, который уравновешивается атмосферным давлением 90 кПа.

Задача 2. Рассчитайте силу, сжимающую полушария, если их диаметры составляют 14 дюймов, а атмосферное давление в тот день было нормальным. Площадь сферы можно рассчитать по формуле S = 4 pR 2, а 1 дюйм ≈ 2,54 см.

Основные выводы:

· Атмосфера нашей планеты оказывает давление на все тела, расположенные на Земле.

· Нормальное атмосферное давление принято давление столба ртути высотой 760 миллиметров при


Поделиться с друзьями:

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.117 с.