Базовые операции, используемые в многомерных системах — КиберПедия 

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Базовые операции, используемые в многомерных системах

2019-11-19 263
Базовые операции, используемые в многомерных системах 0.00 из 5.00 0 оценок
Заказать работу

Выделение краёв — это хорошо изученная область в обработке изображений. Границы и края областей сильно связаны, так как часто существует сильный перепад яркости на границах областей. Поэтому методы выделения краёв используются как основа для другого метода сегментации.

Обнаруженные края часто бывают разорванными. Но чтобы выделить объект на изображении, нужны замкнутые границы области.

Выделение границ (выделение краев) — термин в теории обработки изображения и компьютерного зрения, частично из области поиска объектов и выделения объектов, основывается на алгоритмах, которые выделяют точки цифрового изображения, в которых резко изменяется яркость или есть другие виды неоднородностей.

Основной целью обнаружения резких изменений яркости изображения является фиксация важных событий и изменений мира. Они могут отражать различные предположения о модели формирования изображения, изменения в яркости изображения могут указывать на:

§ изменения глубины;

§ изменения ориентации поверхностей;

§ изменения в свойствах материала;

§ различие в освещении сцены.

В идеальном случае, результатом выделения границ является набор связанных кривых, обозначающих границы объектов, граней и оттисков на поверхности, а также кривые которые отображают изменения положения поверхностей. Таким образом, применение фильтра выделения границ к изображению может существенно уменьшить количество обрабатываемых данных, из-за того, что отфильтрованная часть изображения считается менее значимой, а наиболее важные структурные свойства изображения сохраняются. Однако не всегда возможно выделить границы в картинах реального мира средней сложности. Границы выделенные из таких изображений часто имеют такие недостатки как фрагментированость (кривые границ не соединены между собой), отсутствие границ или наличие ложных, не соответствующих исследуемому объекту, границ.

Свойства границ

Границы выделенные на двумерном изображении трехмерной сцены могут быть подразделены на зависимые или не зависимые от точки обзора. Независимые от точки обзора границы обычно отражают свойства, унаследованные у объектов трехмерной сцены, такие как расцветка поверхности и её форма. Зависимые от точки обзора границы могут меняться с изменением точки обзора и отражают геометрию сцены, как, например, перекрывающиеся объекты.

Обычной границей может быть, например, граница между блоками красного и желтого цвета. С другой стороны линия может быть набором пикселей отличающегося цвета на постоянном фоне. Поэтому у линии может быть по границе с каждой стороны от неё.

Границы имеют довольно важное значение во многих приложениях обработки изображений, особенно в системах машинного зрения, которые анализируют сцены искусственных объектов при фиксированном освещении. В последние годы, однако, были последовательно (и успешно) проведены исследования методов компьютерного зрения, которые не полагаются на выделение границ как на шаг предобработки.

Простая модель границы

Хотя некоторая литература рассматривает выделение идеальных ступенчатых границ, границы на натуральном изображении обычно не такие. На них обычно влияет один или несколько следующих эффектов:

§ Фокусное размытие из-за конечной глубины резкости съемки,

§ Размытая полутень от неточечных источников света,

§ Затенение гладких объектов,

и поэтому многие исследователи используют ступенчатый край, сглаженный функцией Гаусса (функция ошибки), в качестве простейшего приближения модели идеального края для моделирования размытых границ в прикладных задачах. Таким образом, одномерное изображение f, которое имеет строго один край в точке x = 0, может быть смоделирована как:

Здесь

Слева от границы яркость , справа — . Параметр σ называется размером размытия границы.

 Подходы к выделению границ

Существует множество подходов к выделению границ, но практически все можно разделить на две категории: методы, основанные на поиске максимумов, и методы, основанные на поиске нулей. Методы, основанные на поиске максимумов, выделяют границы с помощью вычисления «силы края», обычно выражения первой производной, такого как величина градиента, и затем поиска локальных максимумов силы края, используя предполагаемое направление границы, обычно перпендикуляр к вектору градиента. Методы, основанные на поиске нулей, ищут пересечения оси абсцисс выражения второй производной, обычно нули Лапласиана или нули нелинейного дифференциального выражения, как будет описано далее. В качестве шага предобработки к выделению границ практически всегда применяется сглаживание изображения, обычно фильтром Гаусса.

Опубликованные методы выделения границ отличаются применяемыми фильтрами сглаживания и способами, как считается сила края. Хотя многие методы выделения границ основываются на вычислении градиента изображения, они отличаются типами фильтров, применяемых для вычисления градиентов в x- и y-направлении.

Выделение границ Канни

Канни изучил математическую проблему получения фильтра, оптимального по критериям выделения, локализации и минимизации нескольких откликов одного края. Он показал, что искомый фильтр является суммой четырех экспонент. Он также показал, что этот фильтр может быть хорошо приближен первой производной Гауссианы. Канни ввел понятие Non-Maximum Suppression (подавление не-максимумов), которое означает, что пикселями границ объявляются пиксели, в которых достигается локальный максимум градиента в направлении вектора градиента.

Хотя его работа была проведена на заре компьютерного зрения, детектор границ Канни до сих пор является одним из лучших детекторов. Кроме особенных частных случаев трудно найти детектор, который бы работал существенно лучше, чем детектор Канни.

Детектор Канни-Дерише был выведен из похожего математического критерия, как и детектор Канни, хотя, отталкиваясь от другой точки зрения, он привел к набору рекурсивных фильтров для сглаживания изображения вместо экспоненциальных фильтров и фильтров Гаусса.


Поделиться с друзьями:

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.009 с.