Воздушно-эмульсионные огнетушители — КиберПедия 

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Воздушно-эмульсионные огнетушители

2019-11-11 566
Воздушно-эмульсионные огнетушители 0.00 из 5.00 0 оценок
Заказать работу

Основными плюсами воздушно-эмульсионных огнетушителей являются: безопасность для людей и окружающей среды; не уменьшают видимость; можно тушить достаточно большую площадь; эффективно охлаждают очаг возгорания; можно использовать при температуре до -40 градусов. Вещи после их использования хорошо отмываются и их не придется выбрасывать.

С помощью данного вида огнетушителей возможно бороться с пожаром в помещении без предварительной эвакуации людей, в транспорте и на улице. Можно тушить горючие вещества, органические вещества, горение которых происходит с тлением, горючие жидкости, электроустановки под напряжением и электрооборудование до 10000 В

Хладоновый вид огнетушителей используется там, где недопустима порча оборудования и важных объектов, а также для тушения высоковольтных установок. Например, радиоэлектронная аппаратура, ценная документация, экспонаты в музее. Основными плюсами является отсутствие разрушительного действия на объекты тушения, и высокая скорость устранения пламени, может применяться на разнообразных материалах. Недостатком является отравляющее действие хладона на людей и окружающую среду.

ВОДНЫЕ ОГНЕТУШИТЕЛИ

Водный тип устройств прекрасно подойдет для тушения твердых горючих веществ и органических материалов, горение которых происходит с тлением – бумага, дерево, ветошь. Не используется для тушения горючих жидкостей и электрооборудования. Преимущества: экологическая безопасность для людей и природы, хорошая охлаждающая способность, вещи после его использования практически не портятся. Недостатки: нельзя использовать при минусовой температуре, необходима перезарядка каждый год, высокая коррозийность заряда

·

 

8. Эксплуатация огнетушителей, сроки и порядок проведения испытания корпусов огнетушителей. Особенности эксплуатации огнетушителей в зимнее время.

9. Определение, устройство, принцип действия и сравнительные характеристики простейших насосов (поршневых, ротационных, струйных и центробежных).

У поршневых (плунжерных) насосов в закрытом цилиндре ходит поршень (плунжер), совершая возвратно-поступательное движение. Так как в поршневых насосах процессы всасывания и нагнетания попеременно чередуются в одном и том же пространстве, то поршневые насосы снабжают распределительными механизмами – клапанами, назначение которых попеременно соединять всасывающую и нагнетательную полость насоса с внутренним пространством.

Поршневые насосы подразделяются на насосы простого, двойного и дифференциального действия (см. рис. 3.1).

Принцип действия поршневых насосов основан на том, что во время всасывания вследствие возвратно-поступательного движения поршня в цилиндре рабочий объём камеры увеличивается, создаётся разряжение, и в неё под действием атмосферного давления через всасывающий клапан поступает перекачиваемая среда (газ или жидкость). Во время нагнетания объём камеры уменьшается, перекачивающей среде сообщается энергия движения, и она выдавливается через нагнетательный клапан в напорную линию.

У поршневых насосов простого действия за два хода поршня (один цикл) происходит один раз всасывание и один раз нагнетание.

В поршневых насосах двойного действия всасывание и нагнетание происходит при каждом ходе поршня. Эти насосы по существу являются соединением двух насосов простого действия в одном агрегате.

У поршневых насосов дифференциального действия всасывание происходит за один ход поршня, а нагнетание за два хода, то есть всасывание происходит периодически, а нагнетание непрерывно. Так при движении поршня вправо в левой полости происходит всасывание жидкости, одновременно из правой полости вытесняется определённое количество перекачивающей среды. При обратном ходе из левой полости жидкость или газ выталкивается через нагнетательный клапан в нагнетательную трубу, соединяющую обе полости цилиндра. В это же время в правой полости освобождается пространство. Таким образом, подача будет одинакова за оба хода. Этот тип поршневых насосов обладает такой же равномерностью подачи, как и поршневые насосы двойного действия, выгодно отличаясь от последних меньшим числом клапанов.

 

У пластинчатого (шиберного) насоса (см. рис. 3.2) при вращении ротора 1, эксцентрично расположенного в корпусе насоса 4, объём 3 между двумя смежными шиберами в первый полупериод увеличивается, а затем уменьшается. Происходит постоянное всасывание жидкости или газа (на данном рисунке справа снизу) и нагнетание (влево наверх).

Шиберы в таких насосах выполнены в виде пластин, которые радиально перемещаются в специальных пазах ротора.

Аналогично шиберным насосам работают роликовые насосы, только вместо шиберов применяются ролики, которые также расположены в специальных профилированных пазах ротора.

Струйные насосы

Насосы струйного типа работают на принципе эжекции, то есть передачи энергии от рабочей среды к нагнетаемой. Они отличаются от других насосов тем, что у них нет подвижных частей, а рабочим органом является сама рабочая среда, в качестве которой могут служить жидкости и газы. В зависимости от рабочей среды струйные насосы разделяются на газоструйные и водоструйные.

Работа струйного насоса основана на законе сохранения энергии потока:

Схема струйного насоса, основными конструктивными элементами которого являются сопло, вакуумная камера и диффузор, представлена на рис. 3.5.

При работе струйного насоса рабочая среда Q1 (жидкость или газ) подходит к насадку с некоторым запасом потенциальной Р/γ и кинетической V2/2g энергии. Уменьшаясь в сечении, насадок увеличивает скорость потока V и, тем самым, кинетическую энергию потока. Тогда, в соответствии с законом сохранения энергии потока, пропорционально уменьшается потенциальная энергия потока, а именно рабочее давление потока Р. Увеличивая скорость потока можно получить такое уменьшение давления, что в вакуумной камере у сопла создастся разряжение (давление ниже атмосферного). Под действием атмосферного давления в вакуумную камеру поступает эжектируемая среда Q2 и далее струёй рабочей среды Q1 уносится в диффузор. В расширяющемся диффузоре скорость движения потока рабочей и подсасываемой среды уменьшается, а напор увеличивается, т. е. происходит преобразование кинетической энергии в потенциальную. Таким образом, в струйном насосе при увеличении скорости потока на выходе из сопла увеличивается разряжения в вакуумной камере, и соответственно возрастает количество эжектируемой (подсасываемой) среды.

Основным преимуществом струйных насосов является простота конструкции, за счёт чего область их применения в пожарной технике весьма широка. Их используют в качестве пеносмесителей, а в насосных установках в качестве вакуумных насосов. В пожарной технике эжектирующая способность данных насосов находит своё применение в работе гидроэлеваторов, пеногенераторов и другого оборудования.

 

Центробежные насосы

В центробежных насосах движение перекачиваемой жидкости осуществляется за счёт возникающей при работе насоса центробежной силы частиц жидкости, т.о. центробежные насосы работают по принципу использования центробежной силы:

Центробежный насос (см. рис. 3.6) состоит из следующих основных конструктивных элементов: вал, рабочее колесо, всасывающий патрубок, напорный патрубок (спиральный отвод), корпус, спиральная камера.

Основной частью насоса является рабочее колесо 2 с профилированными лопатками. При вращении колеса, посаженного на вал 1, вода, находящаяся в каналах колеса (корпус насоса предварительно заполняется жидкостью), также начинает вращаться, под действием центробежной силы перемещаться от центра рабочего колеса к периферии и собираться в напорном патрубке (спиральном отводе) 4. В результате перемещения воды в центре рабочего колеса создаётся разрежение, куда через всасывающий патрубок 3 под действием атмосферного давления непрерывно поступает вода. В расширяющемся напорном патрубке 4 и в расположенном за ним диффузоре скорость движения потока жидкости уменьшается, и кинетическая энергия потока преобразуется в потенциальную (энергию давления).

Характерными признаками центробежного насоса является общее направление потока жидкости от центра к периферии.

Обязательное условие работы центробежных насосов – предварительная заливка их водой перед пуском в работу. При наличии внутри корпуса и рабочего колеса воздуха центробежная сила будет недостаточной для перемещения его по каналам рабочего колеса и создания разрежения, т.к. масса воздуха в 775 раз меньше массы воды.

 

10. Пеносмесители: назначение, виды, устройство, принцип действия и техническая характеристика. Проверка работоспособности пеносмесителей экспресс - диагностикой.

Пеносмеситель является частью автоматической системы дозирования, включающей датчик концентрации и электронный блок управления (рис.2.25, поз.18 и 13).

Пеносмеситель (рис.2.29) закреплен на напорном коллекторе. Основные его части: водоструйный эжектор 1 с краном включения 2, дозатор 3, обратный 7 и сливной 9 краны.

Диффузионный (выходной) конец эжектора вставлен в крышку центробежного насоса, а сопловой (входной) конец эжектора крепится к крану включения эжектора.

При тушении пеной, открыв кран 2 из пожарного насоса поступит вода в эжектор 1. В камере «В» будет создано разряжение. Одновременно с этим в дозаторе 3 приподнимутся шток 4 и 6 с клапанами. Тогда пенообразователь из пенобака будет поступать из камеры А в камеру Б (обратный клапан 7 при этом откроется) и В, а затем в пожарный насос (это показано стрелками).

Обратный клапан 7 лепесткового типа предотвращает доступ воды в пенобак при работе от гидранта в случаях, когда закрывают кран 1 эжектора или останавливают насос, не закрыв предварительно кран подачи пенообразователя из пенобака в насос.

Сливной кран 9 предназначен для слива пенообразователя из полостей А и Б дозатора по окончании работы насоса. Ручка крана выведена на приборную панель (поз.10 на рис.2.25,а).

При открытом положении крана 9 и приподнятом положении клапана 6 проточная полость Б дозатора через специальное отверстие в области крана 9 сообщается с эжектируемой полостью В и через эжектор 1 со всасывающей полостью насоса. В этом положении клапан 8 должен быть поставлен в положение «открыть» для поступления воздуха в насос при сливе пенообразователя, а также и воды.

Шток 4 перетекающего клапана и шток 6 дозирующего клапана управляются специальными механизмами.

Механизм управления штоком 4 отсекающего клапана работает следующим образом (рис.2.30). Повышение давления в пожарном насосе будет деформировать сильфон 2, перемещая шток 3 вверх. Рычаг 5, поворачиваясь, переместит шток клапана 7 вверх. Полости Б и В на рис.2.29 соединятся. При понижении давления в насосе пружина 6, разжимаясь, переместит клапан 7 в исходное положение.

Механизм управления дозирующим клапаном может работать в автоматическом режиме и при ручном управлении. Дозирующий клапан 1 (рис.2.31) закреплен на зубчатой рейке 2, которая посредством редуктора, включающего детали 7,3,4 и 5, приводится в движение электродвигателем 6. Последний управляется электронным блоком. При перемещении дозирующего клапана относительно проточного отверстия в корпусе изменяется проходное сечение проточной полости дозатора. Вследствие этого происходит изменение подачи пенообразователя в эжектор.

Включение пеносмесителя осуществляется следующим образом. На приборной панели насоса (поз.1 на рис.2.25,а) включается эжектор пеносмесителя (см. поз.2 на рис.2.29). На приборной панели указаны концентрации пенообразователя 3 и 6%. Такие концентрации пенообразователя можно подавать в 1…5 пеногенераторов. При этом будет устанавливаться соответствующее положение дозирующего клапана ручным приводом. Схема привода дозирующего клапана представлена на рис.2.32.

Червячное колесо 3 вмонтировано во фрикционную муфту 5. Основная ее часть закреплена шплинтом на оси рукоятки 6, а вторая прижимается к первой (основной) пружинами 7. Вследствие этого при повороте рукоятки 6 червячное колесо 3, удерживаемое червяком 4 (см. поз.4 на рис.2.31) не будет вращаться. При этом зубчатое колесо 2 переместит рейку 1 (поз.2 на рис.2.31) с ее дозирующим клапаном в необходимое положение, обеспечивающее требуемую подачу пенообразователя.

Автоматическая система дозирования (АСД) пенообразователя обеспечивает поддержание требуемой его концентрации. На лицевой панели электронного блока управления (рис.2.33) размещены переключатели и индикаторы контроля работы системы.

Включение в работу осуществляется следующим образом. При включении тумблера 2 загорается индикаторная лампочка 1. Затем включается переключателем 3 тип пенообразователя, а переключателем 4 – коррекция его концентрации. При подаче пенообразователя будет гореть лампочка 6.

Принцип работы АДС основан на сравнении электрической проводимости раствора пенообразователя с электрическим эквивалентом раствора заданной концентрации. При изменении концентрации раствора пенообразователя изменится его электрическая проводимость. Ее рассогласование с электрическим эквивалентом зафиксируется в электронном блоке и будет выработан управляющий сигнал на электрический двигатель дозатора (см. поз. 6 на рис.2.31). Двигатель изменит обороты и через систему зубчатых колес изменится положение клапана 1 и, следовательно, концентрация пенообразователя.

 

11. Пожарный гидроэлеватор Г-600А, принцип действия техническая характеристика, порядок использования при уборке воды из помещений и заборе воды из водоисточников.

Подача воды из водоема с помощью гидроэлеватора. Забор воды из открытых водоисточников с помощью гидроэлеватора организуется в трех случаях, когда:

– уровень воды в водоеме ниже уровня насоса по вертикали более 7 м;

– водоем удален от пожарного автомобиля по горизонтали на расстояние до 100 м;

– толщина слоя воды в водоеме 5…10 см.

Кроме того, гидроэлеваторы используются для откачки воды из подвалов, из различных объектов на пожарах.

Забор воды автоцистерной из открытых водоисточников осуществляется при помощи одного или нескольких гидроэлеваторов, включаемым по различным схемам.

Схема, при которой в рукавную линию 1 подается небольшое количество воды представлена на рис.8.23. Для подачи воды необходимо:

– выжав сцепление, включить коробку отбора мощности и отпустить педаль сцепления;

– выключить сцепление рычагом из насосного отсека;

– открыть напорную задвижку «а» на насосе (к гидроэлеватору), через нее выйдет воздух из насоса;

 открыть задвижку «б» на трубопроводе из цистерны;

–включить сцепление и увеличить частоту вращения вала насоса до 2000 об/мин;

–при начале поступления воды из напорного рукава 3 в цистерну 2 открыть задвижку «б» на напорном коллекторе насоса (к стволу в напорной линии 1);

 установить напор на насосе в пределах 70…80 м.

При работе необходимо следить за уровнем воды в цистерне. Он регулируется задвижкой на напорном коллекторе насоса и частотой вращения вала насоса.

В случае, когда необходимо подавать воду через два ствола (расход до 10 л/с) к всасывающему патрубку насоса подсоединяют водосборник. На один его патрубок устанавливают заглушку, а шарнирным клапаном перекрывают патрубок, к которому будет соединяться напорный рукав от гидроэлеватора.

Запуск насоса осуществляют, как указано выше, но вакуумный кран должен быть открыт для выхода воздуха. После запуска такой системы следует закрыть задвижку из цистерны и затем подать воду к стволам.

При подаче воды в количестве 20…20 л/с используются два гидроэлеватора,включенные параллельно (рис.8.24). Включают гидроэлеваторы поочередно: сначала один, затем другой.

При уборке воды из помещений гидроэлеваторная система может работать от гидранта, рабочую и эжектируемую воду сливают в канализацию.

При эксплуатации гидроэлеваторных систем возможен срыв работы систем, уменьшение расхода эжектируемой воды. Наиболее распространенными причинами этого являются заломы рукавных линий, быстрое открытие задвижки подачи воды в рукавную линию, недостаточный напор на насосе. Возможно также засорение всасывающей сетки эжектора, превышение подаваемой воды на пожар над эжектируемым расходом.

Перекачка воды автоцистернами и насосно- рукавными автомобилями.

В районах с большими расстояниями до водоисточников или при неисправных пожарных водопроводных системах возникает необходимость подавать воду по рукавным линиям. В этом случае потери напора в них могут превышать энергетические возможности двигателя и пожарного насоса АЦ или НРА. Поэтому становиться необходимым использовать АЦ или НРА как перекачивающие станции.

Перекачка воды может осуществляться двумя способами. По первому из них вода из насоса одной АЦ подается в насос второй, как показано на рис.2.25,а. По второму способу каждая из последующих АЦ используется как промежуточная емкость, то есть вода подается в цистерну (рис.2.25,б).

Первый способ является более сложным. При его применении необходимо согласовывать работу насосов обоих АЦ. Кроме того, требуется поддерживать избыточное давление (не менее 100 кПа) перед последующим насосом. Если эти условия не соблюдаются, то не исключается срыв работы системы.

Второй способ не требует какого-либо согласования режимов работы насосов. Контроль за работой системы осуществляется по уровню воды в цистерне, заполняемой водой. Этот способ и более экономичен, так как нет необходимости ограничивать давление перед цистерной. Поэтому расстояние между АЦ может быть большим, чем в первом случае.

В обоих методах перекачку воды можно осуществлять по двум параллельным рукавным линиям. В этом случае расстояние между АЦ может значительно увеличиваться, особенно при использовании первого способа.

После прокладки рукавных линий возможно большего диаметра по первому способу (для уменьшения гидравлических сопротивлений по их длине) включение в работу системы выполняют в такой последовательности.

Включают пожарный насос АЦ у водоисточника и подают воду во второй насос. Последний должен быть подготовлен к работе, но сцепление выключено.

При поступлении воды ко второму пожарному насосу включить его сцеплением и плавно открыть задвижки напорных патрубков. Требуемый напор у насоса регулируется изменением частоты вращения вала пожарного насоса.

При перекачке воды по второму способу пожарный насос второго пожарного автомобиля включают после заполнения цистерны водой.

Уровень воды в цистерне регулируется увеличением подачи первого или уменьшением подачи второго насоса. Это осуществляется изменением частоты вращения валов пожарных насосов.

 

12. Назначение, виды, общее устройство, тактико-технические характеристики мотопомп.

Мотопомпы – это транспортируемые средства, предназначенные для подачи воды из водоисточника к месту тушения пожара. Они представляют собой автономный агрегат, состоящий из центробежного насоса и двигателя внутреннего сгорания. Их автономность, сравнительно небольшая масса делают их незаменимыми в пожарной охране сельской местности, организации подачи воды из труднодоступных для АЦ мест.

Имеются различные модификации мотопомп: для работы на морской воде, для перекачки различных жидкостей. Они могут использоваться и для целей пожаротушения.

Мотопомпы могут устанавливаться на автоцистернах и пожарных автомобилях первой помощи, что позволяет, при отсутствии удобного подъезда к водоисточнику, установить на нем мотопомпу и организовать работу вперекачку.

По тактическому назначению и способу транспортировки мотопомпы делят на два типа: переносные и прицепные.

Мотопомпы переносные монтируют на легких рамах. К месту пожара их доставляют транспортными средствами или подносятся к водоисточнику вручную.

Мотопомпы прицепные оборудуют на одноосных прицепах. Их буксирует любой автомобиль с буксирным устройством.

Мотопомпа прицепная МП-1600 (рис.8.30). Ее монтируют на одноосном прицепе. Она состоит из двигателя внутреннего сгорания и центробежного насоса.

Мотопомпы предназначены для подачи воды из открытых водоисточников, перекачки воды при тушении пожаров, а также перекачки и подачи воды для различных хозяйственных целей.

Пожарная мотопомпа состоит из бензинового карбюраторного двигателя внутреннего сгорания и центробежного насоса, смонтированных на общей раме. Полная автономность в работе, простота и надежность конструкций, несложные правила обращения делают мотопомпы незаменимыми при тушении пожаров, особенно в сельских районах. Высокая мобильность переносных мотопомп позволяет установить их на водоисточники практически в любом месте, недоступном для пожарных автомобилей.

Мотопомпы делятся на переносные и прицепные. Переносные доставляют к месту пожара на автомобилях, повозках, специальных тележках или подносят к водоисточнику на руках. Прицепные мотопомпы смонтированы на одноосном прицепе, который буксирует любой автомобиль с буксирным устройством. На небольшие расстояния их можно транспортировать вручную.

Главный параметр мотопомпы – подача насоса. В настоящее время наибольшее применение для пожаротушения получили мотопомпы с подачей воды 600...1600 л/мин. Пожарные мотопомпы должны удовлетворять следующим требованиям: простота конструкции; удобство управления, технического обслуживания и ремонта; быстрый запуск, подсос воды и подача ее к месту пожара, устойчивая работа при температуре окружающего воздуха от +30 до -40? С; запас топлива не менее чем на 2ч для работы в номинальном режиме.

У переносных мотопомп имеются ручки (для удобства транспортировки) и салазки, а у шасси прицепных мотопомп – колея, вписывающаяся в колею грузовых автомобилей. Прицепные мотопомпы оборудованы устройством для подачи воздушно-механической пены

 

 

13. Назначение, тактико-технические характеристики, устройство, особенности применения самолетов и вертолетов для тушения пожаров.

Применение пожарных автомобилей во многих случаях ограничено или невозможно. Так, их трудно использовать при тушении лесных пожаров, на железнодорожном транспорте. Невозможно их применять при тушении лесных пожаров в горах или на акваториях водоемов. Поэтому и создаются средства пожаротушения на базе летательных аппаратов, судов, железнодорожного транспорта.

Наиболее сложные условия характерны при тушении лесных пожаров. В последние годы для их тушения широко используются авиационные технологии.

Противопожарные летательные аппараты. Авиационные технологии тушения пожаров имеют ряд достоинств:

– точность определения границ пожара;

– высокую оперативность доставки ОВ и пожарных в районы пожара;

– большую эффективность тушения, благодаря концентрированному выливанию воды.

Важно и то, что ее использование независимо от наличия дорог и относительная безопасность боевых действий.

Подразделениями авиалесохраны и МЧС используются летательные аппараты различного назначения. Так, в течение пожароопасного сезона проводится патрулирование лесов самолетами АН-2 по всей территории России. На самолетах АН-24, АН-26 и др. оперативно осуществляется доставка в районы пожаров работников парашютной и десантно-пожарной службы, средств пожаротушения и полевого снаряжения. Все самолеты оборудованы средствами связи. Современные авиатанкеры представлены самолетами АН-2П, АН-26П и гидросамолетом Бе-200ЧС. В аваиаподразделениях МЧС применяется специально оборудованный для пожаротушения самолет Ил-76МД. На борту самолета установлены съемные выливные авиационные приборы ВАП (ВАП-2), вместимостью 42 м3 воды. Кроме того, на самолете находится 0,16 т пенообразователя и 1,7 т раствора ингибиторов

Самолет предназначен в основном для локализации и тушения лесных пожаров. Он доставляет к месту пожара огнетушащие вещества, пожарно-техническое вооружение. С него осуществляется воздушное десантирование к очагу пожара парашютистов-пожарных. Он может использоваться для тушения пожаров методом искусственного вызывания осадков.

Площадь местности, покрываемая выливаемой водой, достигает, при одновременном сливе, 50000 м2

Самолеты-амфибии создают с турбовинтовыми или реактивными двигателями. Для тушения лесных пожаров в МЧС используется самолет-амфибия Бе-200ЧС.

вертолетов. Достоинства их применения обусловлены следующим:

– обеспечивается точность сброса ОВ и высокий диапазон удельного расхода;

– высокая оперативность заполнения емкостей водой (несколько секунд);

– повышается безопасность летного состава, так как отпадает необходимость бреющего полета на высоте 50-80 м.

Пожарные вертолеты могут выполнять в зависимости от назначения различные функции: тушить пожары в зданиях повышенной этажности, промышленных объектах, в степной и лесистой местности, доставлять к месту пожара десант пожарных, пожарной техники и ПТВ.

Пожарный вертолет Ка-21А приспособлен для тушения пожаров в зданиях повышенной этажности, эвакуации людей в крыш, оконных проемов, тушения лесных пожаров.

Вертолет оборудован подвесной системой для работ с лебедкой, средствами группового спасения, имеет грузовой бак вместимостью 5000 л, может иметь специальные бортовые системы пожаротушения.

Скорость полета вертолета 230…250 км/ч, боевой расчет 2 чел., количество перевозимых людей 16 человек.

Вертолет пожарный Ми-8МТ(МТВ) имеет противопожарное оборудование из двух пусковых установок (по бортам) с импульсными средствами пожаротушения, мягкого водосливного устройства на внешней групповой подвеске и регулируемое спусковое устройство (СР-У), обеспечивающее беспарашютное десантирование шести пожарных.

 

14. Классификация, назначение, тактико-технические характеристики и общее устройство пожарных судов.

Пожарные корабли (суда)  предназначены для тушения пожаров на объектах, расположенных на море и прибрежных полосах, а также для проведения спасательных и профилактических работ на морских нефтегазодобывающих и других объектах. Они доставляют к месту пожара боевые расчеты, пожарно-техническое вооружение и огнетушащие вещества и подают забортную воду в очаги горения. Наличие на кораблях запаса пенообразователя позволяет тушить горящие нефтепродукты. Они могут также использоваться для буксировки горящих судов и вести спасание тонущих людей.

Пожарные корабли могут быть мореходные, базовые и речные. К пожарным судам относятся и пожарные катера. При небольших размерах корпуса и осадки они имеют повышенную скорость по сравнению с пожарными судами

 

15. Назначение, общее устройство, тактико-технические характеристики пожарного поезда.

Железнодорожные пожарные поезда. На железнодорожном транспорте для тушения пожаров в подвижном составе и на объектах, к которым можно подать поезд, применяют пожарные поезда

Пожарный поезд оснащается пожарной техникой, снаряжением, пожарно-техническим вооружением, оборудованием и инструментом. Основные его комплектующие: транспортная система комбинированного пожаротушения (ТСПК), пожарная автоцистерна, мотопомпы производительностью 800—1600 л/мин, электростанция мощностью 4—16 кВт, приборы для забора воды из цистерн и заправки цистерн водой, рукава (всасывающий, напорный), лафетный ствол, генераторы пены, лестницы, инструмент.

Пожарные поезда состоят из вагона водонасосной станции и одной-двух цистерн-водохранилищ. В вагоне - водонасосной стан­ции расположены машинное отделение, где стационарно установлены две мотопомпы МП-1600, переносная мотопомпа МП-800 и электростанция, размещены котельное отделение, помещения для боевого расчета поезда, оборудованы места для хранения пожарно-технического вооружения и запаса пенообразователя. Цистерна-водохранилище объемом 50 м3 имеет приспособления для налива воды и забора ее стационарными мотопомпами. Она имеет утепление и систему подогрева воды.

 

Пожарные поезда разделяются на 3 основные группы: универсальные, первой и второй категории.

Универсальный пожарный поезд повышенной производительности состоит из пяти вагонов. Личный состав дежурного караула, специальное оборудование и инвентарь располагаются в одном вагоне. Второй вагон предназначен для размещения насосной станции, электростанции, специальных средств тушения и пожарного оборудования. В третьем вагоне размещен гараж для пожарного автомобиля, чаще всего это АЦ-30(66) и емкости для хранения 5 т пенообразователя. На торцевой стороне вагона смонтирована специальная дверь-подставка с автоматическим приводом для выезда пожарной автоцистерны.

Первый, второй и третий вагоны имеют телефонную связь. В утепленных снаружи двух железнодорожных цистернах емкостью 50…60 м3 каждая хранится запас воды. Для отопления вагонов применяется котел водяного отопления, устанавливаемый в вагоне насосной станции.

В насосной станции устанавливаются две прицепные мотопомпы МП-1600 или МП-1400 и одна переносная МП-800Б.

Пожарный поезд первой категории состоит из четырех вагонов. В одном вагоне размещается дежурный караул, насосные установки, электростанция, запас огнетушащих средств и пожарно-техническое оборудование, вторым является вагон-гараж. Для хранения воды поезд имеет две железнодорожные цистерны.

Пожарный поезд второй категории состоит из трех вагонов. В первом вагоне размещается личный состав дежурного караула, насосные установки, электростанция, пожарно-техническое оборудование и запас пенообразователя. Для хранения воды также используются две железнодорожные цистерны.

 

Пожарные поезда предназначаются для:

 ликвидации пожаров и проведения, связанных с ними, аварийно-спасательных работ на объектах и в подвижном составе железнодорожного транспорта;

– оказания помощи при авариях, крушениях, стихийных бедствиях и других чрезвычайных ситуациях, сопровождающихся пожарами;

– участие в ликвидации пожаров и проведению, связанных с ними, аварийно-спасательных работ, не относящихся к транспорту в пределах своих тактико-технических возможностей.

Пожарные поезда являются средствами военизированной охраны железных дорог. Они дислоцируются на отделениях железных дорог по согласованию с Управлением военизированной охраны МПС.

На пожарных поездах первой и второй категории положено иметь запас пенообразователя 10000 и 5000 кг. Кроме того, на них имеются углекислотные и порошковые огнетушители (ОП-5) по 5 штук и порошковые передвижные огнетушители ОП-50 по 2 штуки.

Пожарные поезда укомплектованы пожарно-техническим вооружением для прокладки рукавных линий и подачи по ним воды или раствора пенообразователя. К этому оборудованию относятся всасывающие рукава и сетки, стволы РС-50, РС-70 и РСК-50, генераторы пены ГПС-2000 и ГПС-600 и т.д.

Поезда укомплектовываются напорными рукавами диаметром 51 мм (700 и 500 м для каждой категории) и 66 мм (1000 и 800, также).

По табелю оснащенности на поездах полагается иметь большое количество необходимого инструмента, снаряжения и спецодежды (более 50 наименований). К ним относятся ломы, топоры, пилы, ручной аварийно-спасательный инструмент, специальная теплозащитная и теплая одежда и т.д.

Поезда оборудуются радиостанциями, телефонными аппаратами, электромегафонами, фонарями и т.д.

По штату боевой расчет поезда состоит из 6-7 человек. При выезде на тушение пожара он пополняется за счет:

– личного состава военизированной охраны, несущего службу на постах, объектах и в парке станции, на которой дислоцируется пожарный поезд;

– свободных от дежурства работников пожарного поезда, проживающих вблизи от стоянки поезда, а также за счет добровольных пожарных дружин, подготовленных для включения в боевые расчеты.

Вызов пожарного поезда на место пожара производится поездным диспетчером или дежурным по станции. Отправление поезда должно быть произведено не более, чем через 10 минут с момента получения извещения о пожаре.

При отсутствии на станции локомотива под пожарный поезд выдается локомотив из-под любого поезда, находящегося на станции.

 

 

16. Понятие о кавитации. Влияние кавитации на работу насосов и меры борьбы с ней.

Нормальная работа центробежного насоса обеспечивается в таком режиме, когда абсолютное давление во всех точках его внутренней полости больше давления насыщенных паров перекачиваемой жидкости при данной температуре. Если такое условие не соблюдается, то начинаются явления парообразования и кавитации, которые приводят к уменьшению или даже прекращению подачи насоса (насос «срывает»).
Кавитацией называют процессы нарушения сплошности потока жидкости, происходящие там, где местное давление понижается и Достигает определенного критического значения. При этом наблюдается образование большого количества мельчайших пузырьков, наполненных парами жидкости и газами, выделившимися из нее. Образование пузырьков внешне похоже на кипение жидкости. Возникшие в результате понижения давления пузырьки увеличиваются в размере и уносятся потоком. При этом наблюдается местное повышение скорости движения жидкости вследствие стеснения поперечного сечения потока выделившимися пузырьками пара или газа.
Попадая в область с давлением выше критического, пузырьки разрушаются, при этом их разрушение происходит с большой скоростью и поэтому сопровождается местным гидравлическим ударом в данной микроскопической зоне. Так как конденсация занимает некоторую область и протекает непрерывно в течение длительного времени, это явление приводит к разрушениям значительных площадей поверхности рабочих колес или направляющих аппаратов. Практически появление кавитации при работе насоса можно обнаружить по характерному потрескиванию в области всасывания, шуму и вибрации насоса. Кавитация сопровождается также химическим разрушением (коррозией) материала насоса под действием кислорода и других газов, выделившихся из жидкости в области пониженного давления.
При одновременном действии коррозии и циклических механических воздействий прочность металлических деталей насоса быстро снижается. При этом воздействие кавитации на металлические детали насоса усиливается, если перекачиваемая жидкость содержит взвешенные абразивные вещества: песок, мелкие частицы шлака и т. п. Под действием кавитации поверхности деталей становятся шероховатыми, губчатыми, что способствует быстрому их истиранию взвешенными веществами. В свою очередь эти вещества, истирая поверхности деталей насоса, способствуют усилению кавитации

17. Классификация летательных аппаратов применяемых в системе МЧС.

По назначению и выполняемым задачам - че­тыре основных класса:

• многоцелевая авиация;

• транспортная авиация;

• поисково-спасательная авиация;

• специальная авиация.

 

а) Многоцелевая авиация аппараты, способные выполнять разнородные задачи без измене­ния их конструктивной схемы

Транспортная авиация включает ЛА, предназначенные в первую очередь для пере­возки грузов (грузовые и военно-транспортные ЛА), а также пассажиров (транспортно-десантные, грузопассажирские и пассажирские ЛА)

Противопожарные ЛА предназначены для борьбы с огнём в лесных массивах и тор­фяниках. В МЧС России с этой целью вертолёты оборудуются специальными водосливными устройствами на внешней подвеске: Ми-8мтв и Ка-32п - ВСУ-5, Ми-26тп - ВСУ-15 ёмко­стью 5 и 15 тонн

патрульно-разведывательные модификации имеют самолёты Ан-30, Ан-74, Бе-200; вер­толёты Ми-2, Ми-8, Ми-24, Ка-32, Ка-226. В МЧС России для этих же целей применяются вертолёты Во. 105 и ВК-117..

 

18. Способы подачи огнетушащих вещес<


Поделиться с друзьями:

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.1 с.