Типовая аппаратурная схема производства БАВ микробиологическим способом. — КиберПедия 

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Типовая аппаратурная схема производства БАВ микробиологическим способом.

2019-09-17 501
Типовая аппаратурная схема производства БАВ микробиологическим способом. 0.00 из 5.00 0 оценок
Заказать работу

 

16 Методы стерилизации питательных сред. Термическая непрерывная и периодическая стерилизация питательных сред

Стерилизация питательных сред.

Стерилизация является заключительной операцией при приготовлении любой питательной среды. Питательные среды после разливки их в сосуды чаще стерилизуют нагреванием — термостерилизацией. Перед стерилизацией сосуды (колбы, пробирки) с налитыми в них средами закрывают ватными пробкам предохраняющими их в дальнейшем от заражения микробами из вне.

Стерилизация насыщенным паром под давлением. Такую стерилизацию проводят в автоклаве. Автоклав представляет собой двухстенный металлически котел, герметично закрывающийся крышкой. Между стенками котла находится вода. Стерилизуемые объекты ставят на дно автоклава. Автоклав снабжен манометром указывающим давление пара в котле, выпускным краном для выхода воздуха и пара и предохранительным клапаном, обеспечивающим выход пара при превышении заданного давления.

Автоклав обогревается газом или электричеством. Образующийся при кипении воды пар поступает в котел через отверстия, имеющиеся в верхней части его внутренней стенки, и через выпускной края выходит, вытесняя из автоклава воздух. После полного вытеснения воздуха (при этом выделяется сильная сплошная струя пара) выпускной кран закрывают и в автоклаве постепенно повышается давление. Когда оно достигнет 1 атм (по манометру), подогрев регулируют, чтобы поддерживать давление на одном уровне в течение необходимого времени. При таком давлении водяной пар имеет температуру 120° С.

При этой температуре выдерживают питательные среды (если объем их не более 0,5—1 л) в течение 20—30 мин. При таком режиме стерилизации погибают не только вегетативные клетки микроорганизмов, споры плесеней и дрожжей, но и бактериальные споры. По окончании стерилизации выключают источник нагрева, после того как стрелка манометра снизится до нуля, осторожно открывают выпускной кран, чтобы вытеснить из автоклава пар. Крышку автоклава открывают лишь после того, как он охладится.

Стерилизуют в автоклаве воду, мясо-пептонный бульон, дрожжевой автолизат, агаровые и другие среды, которые не претерпевают заметных изменений при темпетуре 120° С.

Стерилизация текучим паром. Эта стерилизация бывает дробной, или последовательной. Она применяется чаще для питательных сред, которые могут заметно изменять свои свойства при стерилизации в автоклаве, например молоко, среды, содержащие сахара, желатин.

Для стерилизации используется аппарат Коха (кипятильник Коха). Он представляет собой металлический цилиндр, покрытый изоляционным материалом, с двойным дном и неплотно закрывающейся крышкой, снабженной термометром. На дно цилиндра наливается вода. Над водой располагается металлическая подставка с отверстиями для прохождения пара, на которую помещают стерилизуемые питательные среды.

Вода в аппарате нагревается газом или электричеством до 100°С. Образующийся пар (текучий), прогревает стерилизуемые материалы, выходит через специальное отверстие и неплотности крышки.

Стерилизация производится дробно — в три приема три дня подряд по 30 мин ежедневно. Повторная стерилизация, вызывается тем, что при температуре 100° гибнут не все споры бактерий. В промежутках между нагревами (каждый — раз в сутки) питательная среда выдерживается в термостате при 25° С. За это время оставшиеся живыми споры прорастают в вегетативные клетки, которые и уничтожаются последующим нагревом при 100° С.

Холодная стерилизация (фильтрация). Метод холодной стерилизации применяется для жидких сред, которые не выдерживают нагревания.

Способ заключается в фильтровании сред через специальные мелкопористые бактериологические фильтры, задерживающие микроорганизмы (ультромикробы проходят).

Фильтры изготовляются из различных материалов из фарфоровой глины, асбеста, нитроклетчатки (мембранные ультрафильтры) и др.

 

 

 

 

Рис. 11. Кривая роста клеточных суспензий в закрытой периодической системе

14 Типовая аппаратурная схема производства БАВ микробиологическим способом.

 

Аппаратурное оформление биотехнологического процесса.

Биореакторы

Промышленное производство биопрепаратов представляет собой сложный комплекс взаимосвязанных физических, химических, биофи­зических, биохимических, физико-химических процессов и предполага­ет использование большого количества разнотипного оборудования, которое связано между собой материальными, энергетическими пото­ками, образующими технологические линии.

Основным аппаратурным элементом биотехнологического процесса является биореактор - ферментер (рис. 10). Биореакторы предназначе­ны для культивирования микроорганизмов, накопления биомассы, син-

теза целевого продукта. Биореакторы изготавливают из высоколигиро-ванных марок стали, иногда из титана. Внутренняя поверхность биоре­актора должна быть отполирована.

Типовые ферментеры представляют собой вертикальные ёмкости различной вместимости (малые - от 1 до 10 л, многотоннажные - более 1000 л) с минимальным числом штуцеров и передающих устройств. В биореакторах должны быть обеспечены оптимальные гидродинамиче­ские и массообменные условия.

Ферментеры снабжены паровой рубашкой, мешалками, барботера-ми, стерилизующими воздушными фильтрами, отбойниками, обеспечи­вающими необходимые температурный, газовый режим, гидродинами­ческую обстановку в биореакторе (т.е. процессы массо- и теплообмена). В биореакторах имеются пробоотборцики для отбора проб культураль-ной жидкости в процессе биосинтеза. Могут быть и другие конструк­тивные особенности, учитывающие специфику биотехнологического процесса. Работа отдельных узлов контролируется измерительными приборами, фиксирующими как параметры технологического процесса, так и отдельные физико-химические показатели культивирования (тем­пературу стерилизации и культивирования, скорость вращения мешал­ки, давление, расход воздуха или газов на аэрацию, пенообразование, рН, еН, рО2, рСО2 среды).

Тип биореактора, чистота обработки внутренних стенок аппарата и отдельных его узлов, ёмкость, коэффициент заполнения, поверхность теплоотдачи, способ отвода тепла, тип перемешивающих, аэрирующих устройств, арматура и запорные приспособления, способ пеногашения, — далеко не полный перечень отдельных элементов, которые, в отдель­ности и во взаимосвязи, влияют на процесс культивирования микроор­ганизмов и клеток.

Биореакторы подразделяют на три основные группы (рис. 11):

1) реакторы с механическим перемешиванием;

2) барботажные колонны, через которые для перемешивания со­держимого пропускают воздух;

3) эрлифтныереакторы с внутренней или внешней циркуляцией; перемешивание и циркуляция культуральной среды в них обес­печивается потоком воздуха, за счет которого между верхним и нижним слоями культуральной среды возникает градиент плот­ности.

Биореакторы первого типа используют чаще всего, так как они по­зволяют легко изменять технологические условия и эффективно достав­лять к растущим клеткам воздух, определяющий характер развития микроорганизмов и их биосинтетическую активность. В таких реакто­рах воздух подают в культуральную среду под давлением через раз­брызгиватель - кольцо с множеством маленьких отверстий. При этом

Биореакторы первого типа используют чаще всего, так как они по­зволяют легко изменять технологические условия и эффективно достав­лять к растущим клеткам воздух, определяющий характер развития микроорганизмов и их биосинтетическую активность. В таких реакто­рах воздух подают в культуральную среду под давлением через раз­брызгиватель - кольцо с множеством маленьких отверстий. При этом цели используют мешалки - одну или несколько. Мешалки, разбивая крупные пузырьки воздуха, разносят их по всему реактору и увеличи­вают время пребывания в культуральной среде. Эффективность распре­деления воздуха зависит от типа мешалки, числа оборотов, физико-химических свойств среды.

При интенсивном перемешивании культуральной среды происходит ее вспенивание, поэтому рабочий объем биореактора не превышает 70% общего объема. Свободное пространство над поверхностью раствора используется как буферное, где накапливается пена, и таким образом предотвращается потеря культуральной жидкости. В пенящейся жидко­сти условия аэрации лучше, чем в плотных растворах (при условии не­прерывного перемешивания и циркуляции слоя пены, т.е. при исключе­нии нахождения микроорганизмов вне культуральной жидкости). Вме­сте с тем вспенивание может привести к переувлажнению фильтров в отверстиях, через которые воздух выходит из биореактора, уменьше­нию потока воздуха и к попаданию в ферментер посторонних микроор­ганизмов.

Конструктивные особенности барботажных колонн и эрлифтных биореакторов дают этим типам ферментеров некоторые преимущества перед реакторами с механическим перемешиванием. Барботажные ко­лонны более экономичны, так как перемешивание в них происходит восходящими потоками воздуха равномерно по всему объему. Отсутст­вие механической мешалки исключает один из путей проникновения в биореактор посторонних микроорганизмов. В барботажных биореакто­рах не возникает сильных гидродинамических возмущений (сдвигов слоев жидкости культуральной среды относительно друг друга).

Уменьшение сдвиговых факторов важно по следующим причинам: клетки рекомбинантных микроорганизмов менее прочны, чем нетрансформированные;

клетка отвечает на внешние воздействие уменьшением количе­ства синтезируемых белков, в том числе рекомбинантных; под влиянием сдвиговых эффектов могут изменяться физиче­ские и химические свойства клеток, что затрудняет дальнейшую работу с ними (ухудшаются условия выделения, очистка реком­бинантных белков).

В барботажных колоннах воздух подают под высоким давлением в нижнюю часть биореактора; по мере подъема мелкие пузырьки воздуха объединяются, что влечет неравномерное его распределение. Кроме того, подача воздуха под высоким давлением приводит к сильному пе-нообразованию.

В эрлифтных биореакторах воздух подают в нижнюю часть верти­кального канала. Поднимаясь, воздух увлекает за собой жидкость к верхней части канала, где расположен газожидкостный сепаратор (здесь частично выходит воздух). Более плотная деаэрированная жидкость опускается по другому вертикальному каналу ко дну реактора и процесс повторяется. Таким образом, в эрлифтном биореакторе культуральная среда вместе с клетками непрерывно циркулирует в биореакторе.

Эрлифтные биореакторы выпускаются в двух конструктивных вари­антах. В первом - реактор представляет емкость с центральной трубой, которая обеспечивает циркуляцию жидкости (реакторы с внутренней циркуляцией). У эрлифтного биореактора второго типа культуральная среда проходит через отдельные независимые каналы (реактор с внеш­ней системой циркуляции).

Эрлифтные биореакторы более эффективны, чем барботажные ко­лонны, особенно в суспензиях микроорганизмов с большей плотностью или вязкостью. Перемешивание в эрлифтных ферментерах более интен­сивно и вероятность слипания пузырьков минимальна.

Для стерилизации биореактора применяют пар под давлением. Внутри биореактора не должно быть «мертвых зон», недоступных для пара во время стерилизации. Стерилизации подлежат все клапаны, дат­чики, входные и выходные отверстия.

Стерильность обеспечивается и герметизацией биотехнологическо­го оборудования, работающего в асептических условиях. Стерильная передача жидкости осуществляется через штуцеры парового затвора. Технологическая обвязка биореактора исключает контаминацию куль-туральной жидкости посторонней микрофлорой и возможности попада­ния продуктов биосинтеза в окружающую среду. Основные агенты, контаминирующие клеточные культуры — бактерии, дрожжи, грибы, простейшие, микоплазмы, вирусы. Источники контаминации - воздух, пыль, питательные среды, рабочие растворы, оборудование, рабочий персонал.

14 Требования к проведению отдельных процессов в стерильных условиях с аэрацией культур.1

Методы, применяемые для исключения возможности попадания в культуру посторонней микрофлоры, основаны либо на задержке, либо на уничтожении микроорганизмов (рис. 6.1).

Рис. 6.1. Способы обеспечения асептических условий

К методам, основанным на первом принципе, можно отнести стерилизующую фильтрацию воздуха и жидкостей (растворов питательных веществ), а также герметизацию технологического оборудования и коммуникаций. К методам, основанным на уничтожении микроорганизмов, относятся термическая, химическая и радиационная стерилизации (ионизирующее излучение). В биотехнологии наиболее распространена термическая стерилизация. Она применяется для стерилизации оборудования и коммуникаций, питательных сред и технологических растворов, для создания тепловых барьеров, препятствующих прониканию микроорганизмов в аппарат во время отбора проб, внесения посевного материала и добавок. В качестве стерилизующего агента при термической стерилизации обычно используют насыщенный водяной пар различного давления и температуры. Химическую стерилизацию применяют обычно для тех элементов оборудования, которые не выдерживают нагревания до температуры 110—130 °С, необходимой для тепловой стерилизации (некоторые датчики и другие средства

КИПиА, фильтры для воздуха и жидкостей). В качестве агентов химической стерилизации используют формальдегид, оксид этилена, Р-пропиолактон и др.

Радиационная стерилизация основана на губительном воздействии ионизирующего излучения на клетки микроорганизмов. Она пока не нашла широкого применения в микробиологической промышленности.

 

16. Методы стерилизации питательных сред.Основываясь на влиянии внешних условий на микроорганизмы, в микробиологической практике разра­ботан ряд приемов, приводящих микроорганизмы к гибе­ли. Одним из таких приемов является стерилизация.

Под стерилизацией (обеспложиванием) понимают пол­ное уничтожение микро­орга­низмов и их спор в питатель­ных средах, посуде, на инструментах и других предме­тах лабораторного оборудования. Для их стерильности наиболее часто пользуются воз­действием высокой тем­пературы.

 


Поделиться с друзьями:

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.03 с.