Источники плазмы и электронов — КиберПедия 

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Источники плазмы и электронов



В чистом воздухе источником плазмы, как состояния ионизированного вещества, и электронов является сам воздух, составляющие его ионы и молекулы в основном азота и кислорода. В предыдущем материале достаточно подробно был изложен механизм расщепления азота, кислорода на фрагменты и – образования воды. При распаде молекул становятся свободными электроны, связывающие атомы. Эти электроны начинают ФПВР путем взаимодействия с атомами и другими фрагментами, отрывая мелкие частицы-электрино, как это было описано выше.

Зная количественный состав воздуха , легко подсчитать количество электронов при разламывании двухмостиковой молекулы азота (освобождается 2 электрона) и одномостиковой молекулы кислорода (1 электрон):

(на одну молекулу кислорода в исходном воздухе).

Так же, по уравнению (6) видим, что в результирующих продуктах азотной реакции в свободном и связанном состоянии имеется 7,6 атомов кислорода (на одну молекулу в исходном воздухе). Таким образом, на каждый атом кислорода приходится по электрона, что обеспечивает реакцию интенсивнее, чем горение (до ) примерно в раз (по соотношению количества атомов на одну молекулу кислорода и электронов), что совпадает с отношением теплотворной способности воздуха и топлива. Однако полученное количество электронов не обеспечивает незатухающую ядерную реакцию, что, впрочем, нам и не надо, и даже вредно.

В реальных условиях плазму можно создать не во всем объеме воздуха, а в некоторых микрозонах с концентрацией ионизирующего воздействия в локальной области пространства, заполненного воздухом, в том числе, вблизи стенок камеры, на которые нанесен, например, катализатор. Поэтому может быть недостаточно электронов для начала азотной реакции или реакция будет слабой и быстрозатухающей. Для увеличения энергетической емкости азотной реакции следует вводить в зону реакции вещества, богатые электронами: углеводороды (топливо), алюминий и его окислы (алюминиевая пудра), микрокремнезем, алюмосиликаты и другие, которые подбираются опытным путем.

Инициирующие воздействия

Механизм создания плазмы как состояния ионизирующего раздробленного вещества описан выше. Плазма создается каким-либо инициирующим воздействием: химическая и ядерная реакции, повышение температуры и понижение давления (создание вакуума), электрический разряд и детонация, элекромагнитный и лазерный импульс, концентрированные потоки электронов и электрино, детонация и стоячие волны давления, микровзрывы и кавитация, катализаторы и т.п.



 

 

Химические реакции

Общеизвестным примером химической реакции для создания плазмы является горение органического топлива, описанное в /3/. И хотя эта реакция является также щадящей ядерной (масса атома кислорода уменьшается на 286 электрино), ее одной недостаточно, чтобы расщепить азот воздуха.

Другим примером, приведенным в /3/, является химическая реакция в свинцовом аккумуляторе, в котором перекись водорода распадается на ионы водорода, кислорода и электроны связи, которые начинают выдергивать из фрагментов плазмы мелкие частицы-электрино, то есть генерировать электрическую энергию в виде потока электрино вблизи анода с последующим переходом их на анод и в электрическую сеть.

Ядерные реакции

В /3/ приведены ядерные реакции распада урана-235, вызывающие плазменное состояние окружающего вещества, в том числе, воздуха, в атмосфере которого производят взрывы, с последующим выбрасыванием накопленных электронов, которые тут же начинают взаимодействовать с осцилляторами воздуха. То есть вызывают азотную реакцию с дополнительным (на 2…3 порядка) выделением энергии связи элементарных частиц этих осцилляторов: азота, кислорода …

 

Повышение температуры

Повышение температуры приводит к увеличению частоты колебаний осцилляторов газа и, соответственно, электродинамических ударных взаимодействий с соседями, которые при превышении предела прочности приводят к разрушению молекул газа, и, тем самым, созданию – состояния ионизованного раздробленного вещества-плазмы.

Вакуум

Понижение давления – вакуум также способствует распаду вещества. Так, при давлении 70 Па азот распадается уже при тлеющем электрическом разряде. Распад происходит за счет разности давлений внутри и вне молекулы, превышающей предел ее прочности.



Электрический разряд

В соответствии с теорией Д.Х.Базиева /4/ электрический разряд – есть электрический ток, который, по аналогии с электронной проводимостью в проводниках, идет благодаря ионной проводимости в плазме разряда. Этот ток электрино и вызывает дробление вещества, а, оказавшись свободными, электроны связи (атомов) начинают работать генераторами энергии (дополнительной энергии), «раздевая» фрагменты плазмы.

Прямой разряд по его окончании разбивается на кусочки (осколки, отрезки), которые в силу принципа минимума поверхностной энергии сворачиваются в сферы (аналогично каплям воды) – шаровые молнии, вокруг которых продолжает течь ток, подпитываемый земным магнитным полем, и имеющим с ним структурную аналогию.

Лазерное излучение

Как указано в /3/ лазерное излучение есть концентрированный электрический ток вокруг естественного сверхпроводника – электронного луча. Концентрация энергии в лазерном луче на 4 порядка выше концентрации энергии электротока в проводнике. Поэтому в фокусе луча происходят взрывы воздуха, сопровождаемые свечением области взрыва и потоком электрино в виде рентгеновского излучения, являющегося также продуктом азотной реакции.

Некоторое представление о параметрах взрыва и плазмы можно получить в результате энергетической оценки импульса реального неодимового лазера с энергией излучения 600 Дж за 2 мкс.






Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...



© cyberpedia.su 2017 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав

0.007 с.