Как на самом деле работает радио? — КиберПедия 

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Как на самом деле работает радио?

2017-05-18 237
Как на самом деле работает радио? 0.00 из 5.00 0 оценок
Заказать работу

 

Представьте себе, что вы хотите поговорить с другом в Африке, но у вас есть только один электрон. Одна из «мух», которые жужжат в пустом кафедральном соборе атома. Сможете ли вы решить свою задачу? Теоретически да. Когда по проводам идет электрический ток, он создает магнитное поле. Вы сможете увидеть это, если положите компас рядом с электропроводом: вы заметите, как задвигается его стрелка. Дело в том, что вокруг провода с электрическим током образуется магнитное поле. Оно и заставляет стрелку двигаться. А переменное (колебательное) магнитное поле создает поле электрическое. Когда вы крутите педали велосипеда с включенным динамо, то заставляете ротор в виде катушки медной проволоки вращаться внутри статора – магнита. Магнитное поле в катушке постоянно пульсирует, то есть совершает колебания, индуцируя электричество, питающее лампочку велосипеда[174]. За исключением солнечной энергии, практически всё электричество, используемое нами, производится электромагнитными генераторами того или иного типа.

 

Создайте свою радиостанцию

 

Представьте себе, что вы берете единственный электрон и сильно встряхиваете его вверх и вниз, как бутылку с застрявшим кетчупом. У электрона отрицательный заряд, и его перемещения создают магнитное поле. Колебания магнитного поля создают поле электрическое. Перемещение заряда вверх и вниз генерирует одновременные взаимосвязанные электрическое и магнитное поля, которые обусловливают друг друга. Электромагнитное излучение исходит вовне от двигающегося электрона в виде волн со скоростью света. Именно их мы и имеем в виду, когда говорим о радиоволнах.

В практическом смысле для генерации радиоволн лучше всего заставить электрон двигаться вверх и вниз по металлическому стержню – радиоантенне. Можно превратить принимаемую радиоволну в электрические заряды, сигналы и звуки, которые вы услышите с помощью второй антенны (у приемника), так же как вибрацию электрона – в излучаемую радиоволну (из передатчика). Длина антенны должна составлять половину длины радиоволны, которую она передает или принимает. В случае мобильных телефонов, которые работают в диапазоне частот порядка 2 ГГц, микроволны, несущие речевое сообщение, имеют длину порядка 15 см[175], так что антенна должна быть длиной примерно с ваш мизинец (она может выдвигаться из корпуса телескопически либо, как в современных устройствах, быть встроенной в корпус). Транзисторные радиоприемники, работающие в диапазоне FM, используют более низкие частоты, чем мобильные телефоны (и б о льшую длину волны). Как и более старые мобильники, эти радиоприемники оборудуются телескопическими антеннами длиной 1–1,5 м. Посчитайте, и вы увидите, что это примерно половина длины волны обычной радиопередачи в диапазоне FM[176].

 

Расстояние не помеха

 

Как и световые волны, радиоволны распространяются чаще всего по прямой. Если бы это было всегда так, то радиопередатчики приносили бы нам не больше пользы, чем маяки. Их сигналы просто «уходили» бы в космос, не позволяя использовать их для передачи сигнала на расстояние больше 15–30 км[177]. Радиоволны так хороши для связи, поскольку способны легко огибать сферическую поверхность Земли. Это обусловлено двумя причинами. Во-первых, если высокая радиомачта соединена с Землей, планета сама служит нижним плечом антенны. Представьте себе, что радиомачта стоит на поверхности озера с абсолютно спокойной водой. Если посмотреть со стороны, то мачта покажется вдвое выше: сама антенна плюс ее отражение в озере. То же происходит с заземленной радиомачтой: планета проводит электричество и служит подобием зеркального продолжения мачты. Когда радиоволна исходит от передающей антенны, она естественным образом окружает контуры планеты, превращаясь в поверхностную волну [178].

 

Как работает транзисторное радио. Транзисторный приемник принимает радиоволны, распространяющиеся в воздухе. Когда волны (электромагнитное колебание) попадают на антенну, по ней начинают двигаться электрические заряды. Это создает электрический ток, который встроенная в приемник специальная цепь преобразует в звуковой сигнал. Входящие сигналы обычно очень слабые; транзистор – компонент радиоприемника, который усиливает их.

 

Вторая причина, по которой радиоволны могут распространяться на очень дальние расстояния, еще интереснее. Если вы используете радиоприемник на средних волнах, то ночью можете услышать треск и шипение зарубежных станций, которые не слышны днем. Здесь свою роль играет часть земной атмосферы, называемая ионосферой. Она занимает слой высотой от 60 до 500 км (по меньшей мере в шесть раз выше, чем летают пассажирские самолеты). В ней содержатся ионы с положительным зарядом. Она проводит электричество. Ионосфера находится под сильным воздействием солнечной радиации, поэтому ее поведение днем и ночью разительно различается. Днем нижние слои ионосферы поглощают радиоволны и не дают им распространяться далеко. Ночью эффект уменьшается, и более высокие слои ионосферы отражают радиоволны, как зеркало. В этих слоях отражаются и направляются к поверхности Земли сигналы, которые иначе вырвались бы в просторы космоса. Некоторые радиоволны постоянно курсируют между поверхностью Земли и ионосферой, путешествуя с одной стороны планеты на другую.

 

Зеркала в космосе

 

Чудо природы – способность радиоволн отражаться от небес – привело в восторг и одновременно вызвало конфликт у величайших умов своего времени. Когда Маркони отправил свои радиоволны из местечка Полду в Британии и они достигли отстоявшего от него на 3200 км Ньюфаундленда, Александр Белл не поверил, что это правда. Он сказал: «Я сомневаюсь, что Маркони сделал это. Это невозможно». Томас Эдисон проявил б о льшую открытость, заявив: «Я хотел бы увидеться с этим отважным молодым человеком, который рискнул предпринять такую попытку и достиг успеха в запуске электрической волны через Атлантику»[179].

Объяснение этому явлению – теория о том, что ионосфера отражает радиоволны, – пришло в голову Оливеру Хевисайду[180], первоклассному английскому физику, имя которого сегодня помнят только в академических кругах[181]. Еще в молодости он совершил революцию в области телекоммуникаций, но позже начал чудить. Он поменял свою одежду на кимоно, выбросил из дома мебель и заменил ее гранитными глыбами, оклеил стены неоплаченными счетами за газ, жил на молоке и печенье и завалил соседей вежливыми жалобами на них, которые подписывал «Его червячное превосходительство профессор Оливер Хивсайд»[182]. Удивительно, насколько иногда прогресс науки и техники зависит от людей, балансирующих на грани гениальности и сумасшествия. Была ли это милая эксцентричность, которая придавала красок скучной академичной жизни, или душевная болезнь, которая лишила человечество какой-то части замечательных идей? Мы никогда этого не узнаем. Близкий друг Хевисайда, известный физик Джордж Сирл, описывал его как «первоклассного чудака», но ни в коем случае не «психически больного»[183].

Идея Хевисайда о том, что ионосфера помогает распространению радиоволн, которую он выдвинул в 1902 году, легла в основу работы глобального радио– и телевещания. Что может быть лучше, чем иметь высоко в небе своеобразное зеркало, отражающее радиосигналы и посылающее их по всей планете? Проблема здесь одна: ионосфера – природное явление, и ее способность отражать и перенаправлять радиосигналы зависит от времени суток и погодных условий. Разве не лучше запустить в ионосферу настоящее зеркало, которое свяжет все уголки нашей планеты надежнее? Эта идея послужила основой для создания спутников связи.

Такие идеи посещали раньше и других людей, но ее разработка приписывается фантасту Артуру Кларку, который впервые написал о целесообразности создания космического корабля, который находился бы на орбите и действовал в качестве космического зеркала. В 1945 году Кларк предложил разместить три искусственных спутника на постоянных орбитах над различными частями нашей планеты, которая совершала бы внутри этой «цепи» свое обычное вращение[184]. Подразумевалось, что спутники должны висеть над Землей на расстоянии 36 000 км, двигаясь по орбитам, которые сегодня мы называем геостационарными [185]. Эта идея оставалась умозрительной до 1957 года, когда СССР запустил первый в мире искусственный спутник Земли. Это не был спутник связи, и его орбита не была геостационарной, но это был большой шаг в верном направлении. Три года спустя США сделали второй важный шаг, запустив свое устройство «Эхо» – первый прототип спутника связи, представлявший собой в буквальном смысле «космическое зеркало».

В отличие от современных спутников связи, представляющих собой металлические контейнеры размером с грузовик, напичканные электронной аппаратурой, питающиеся энергией от солнечных батарей, разработка которых стоит сотни миллионов долларов, «Эхо» представлял собой гигантский шар, 30 м в диаметре, из пластичного волокна майлар[186]. Он служил простым подтверждением идеи отражения радиоволн, которые направлялись и возвращались с него на Землю, словно мячики после удара о стену. Через два года после этого успешного эксперимента был запущен настоящий спутник связи Telstar. К 1965 году появился первый геостационарный спутник системы INTELSAT I Early Bird, который был способен передавать на Землю 240 телефонных каналов или один телевизионный. Современные спутники гораздо сложнее. Они могут одновременно ретранслировать сотни телеканалов.

 


Поделиться с друзьями:

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.014 с.