Можно ли теорию струн проверить экспериментально? — КиберПедия 

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Можно ли теорию струн проверить экспериментально?



Среди многих свойств теории струн, которые мы обсудили в предыдущих главах, возможно, особенно важны три нижеследующих. Во-первых, гравитация и квантовая механика являются неотъемлемыми принципами устройства Вселенной, и поэтому любой проект единой теории обязан включать и то, и другое. В теории струн это реализуется. Во-вторых, исследования на протяжении последнего столетия показали, что существуют и другие ключевые идеи, — многие из которых были проверены экспериментально, — являющиеся центральными для нашего понимания Вселенной. Среди этих идей мы упомянем спин, существование поколений частиц материи и частиц-переносчиков взаимодействия, калибровочную симметрию, принцип эквивалентности, нарушение симметрии и суперсимметрию. Все эти идеи естественным образом вытекают из теории струн. В-третьих, в отличие от более общепринятых теорий, таких, как стандартная модель с ее 19 свободными параметрами, которые могут подгоняться для обеспечения согласия с экспериментом, в теории струн свободных параметров нет. В принципе, ее выводы должны быть совершенно определенными — они должны обеспечить однозначную проверку того, верна теория или нет.

На пути от этого общего теоретизирования к практическому воплощению есть много препятствий. В главе 9 мы описали некоторые технические преграды, которые и сегодня стоят перед нами, например, определение вида добавочных измерений. В главах 12 и 13 мы рассмотрели эти и другие препятствия в более широком контексте необходимости точного понимания теории струн, которое, как мы видели, естественным образом приводит нас к М-теории. Без сомнения, для достижения полного понимания теории струн/М-теории потребуется очень много работы и столь же много изобретательности.

На каждом этапе исследований в теории струн физики искали и будут продолжать искать экспериментально наблюдаемые следствия теории. Мы не должны терять из виду и более отдаленные возможности для поиска подтверждений теории струн, обсужденные в главе 9. В будущем, по мере углубления нашего понимания, без сомнения будут открыты другие эффекты или свойства теории струн, и они подскажут нам новые пути для косвенного экспериментального подтверждения. Важно отметить, что главной вехой для теории струн могло бы стать подтверждение суперсимметрии после открытия частиц-суперпартнеров, рассмотренных в главе 9. Напомним, что суперсимметрия была открыта в процессе теоретического исследования теории струн, и что это — центральная часть теории. Ее экспериментальное обнаружение могло бы стать убедительным, хотя и косвенным, подтверждением теории струн. Более того, открытие частиц-суперпартнеров могло бы стимулировать новые исследования: важность подтверждения суперсимметрии не исчерпывается лишь выяснением ответа на вопрос о том, имеет ли она отношение к нашему миру. Значения масс и зарядов частиц-суперпартнеров покажут, каким конкретным образом суперсимметрия реализуется в законах природы. И у теоретиков, занимающихся струнами, будет шанс проверить, допускает ли эта реализация законченную формулировку и объяснение в рамках теории струн. Конечно, с еще большим оптимизмом можно надеяться, что в течение следующих десяти лет, перед тем, как заработает Большой адронный ускоритель в Женеве, прогресс в понимании теории струн будет достаточным для того, чтобы сделать детальные предсказания о суперпартнерах до их ожидаемого открытия. Подтверждение таких предсказаний стало бы моментом фундаментальной важности в истории науки.



 

Существуют ли пределы познания?

Объяснение всего — даже в ограниченном смысле понимания всех сторон взаимодействий и элементарных составляющих Вселенной — есть одна из величайших задач, с которыми когда-либо сталкивалась наука. И теория струн впервые дает нам достаточно глубокий подход для решения этой задачи. Но сможем ли мы когда-нибудь понять все, на что способна теория, и, например, вычислить массы кварков или константу связи электромагнитного взаимодействия, от точных значений которых так много зависит во Вселенной? Как говорилось выше, на пути к цели стоят многочисленные теоретические преграды; сегодня важнее всего построить законченную формулировку теории струн/М-теории, не опирающуюся на теорию возмущений.

Но может ли случиться так, что даже при полном понимании теории струн/М-теории в рамках новой и более прозрачной формулировки квантовой механики мы окажемся неспособными ответить на вопрос о вычислении масс частиц и констант взаимодействия? Возможно ли, что вместо теоретических вычислений нам опять придется прибегнуть к экспериментальным измерениям для определения этих значений? И, более того, может ли так статься, что причиной этому будет не то, что требуется еще более глубокая теория, а то, что объяснений этим наблюдаемым свойствам реального мира не существует?



На все эти вопросы можно сразу ответить «да». Как в свое время сказал Эйнштейн: «Наиболее необъяснимое во Вселенной — это то, что она объяснима»7).

Удивление нашей способностью понимания Вселенной в целом легко улетучивается в век быстрого и впечатляющего прогресса.

 

Возможно, однако, что существует предел познания. И существование этого предела мы будем вынуждены признать после того, как достигнем самого глубокого уровня понимания, который может предложить наука, а некоторые черты Вселенной все же останутся необъясненными. Может быть, нам придется принять, что определенные черты Вселенной таковы, каковы они есть, лишь вследствие стечения обстоятельств, случая или божественного предопределения. Успех научного подхода в прошлом дал нам смелость думать, что, обладая достаточным количеством времени и прилагая достаточные усилия, мы сможем раскрыть загадки природы. Однако столкновение с абсолютным пределом научных объяснений, а не с техническим препятствием или с текущими границами человеческого понимания, которые постепенно расширяются, будет шоком, к которому опыт прошлого не может нас подготовить.

Несмотря на то, что эта проблема непосредственно относится к поискам окончательной теории, разрешить ее мы все еще не в силах; на самом деле, проблема предела научного познания (в приведенном выше широком смысле), возможно, не будет разрешена никогда. Мы видели, например, что даже для гипотезы мульти-вселенной, ограничивающей, на первый взгляд, возможность научного познания, существуют столь же гипотетические теории, в которых возможность познания восстанавливается (по крайней мере, в принципе).

Один из основных вопросов, возникающих при таком анализе — вопрос о роли космологии в установлении проявлений единой теории. Как мы обсуждали, суперструнная космология — это молодая наука, даже по стандартам молодой теории струн. Она, без сомнения, будет объектом пристального внимания исследователей в течение ближайших лет и, вероятно, станет одной из наиболее быстро развивающихся областей теории. По мере того, как мы продолжаем получать новые сведения о свойствах теории струн/М-теории, наша способность оценивать космологические проявления этой впечатляющей попытки построения единой теории станет даже сильнее. Возможно, конечно, что такие исследования однажды убедят нас в том, что предел научному познанию действительно существует. Но возможно и обратное: что они возвестят о новой эре, в которой фундаментальное объяснение Вселенной будет, наконец, найдено.

 

Достичь звезд

Хотя технологические ограничения привязывают нас к Земле и ее ближайшим спутникам в Солнечной системе, способность мыслить и экспериментировать позволила нам прощупать дальние зоны внутреннего и внешнего космического пространства. За последние сто лет коллективными усилиями многих физиков были раскрыты некоторые из самых глубочайших тайн природы. И эти добытые драгоценные крупицы познания расширили границы мира, который мы считали известным, но великолепие которого мы не могли себе и близко вообразить. Один из критериев глубины физической теории — это степень, в которой она изменяет наше мировоззрение в отношении тех понятий, которые до этого считались незыблемыми. В соответствии с этим критерием, квантовая механика и теория относительности находятся за гранью самых безумных ожиданий. Волновые функции, вероятности, квантовое туннелирование, беспорядочные флуктуации вакуумной энергии, перемешивание пространства и времени, относительность одновременности, искривление пространства, черные дыры, Большой взрыв. Кто мог предположить, что интуитивный, механистический, раз и навсегда заведенный мир Ньютона окажется жалким частным случаем, и что существует целый мир, лежащий прямо за порогом мира обычных вещей?

Но даже эти потрясающие основы открытия — лишь элементы всеобъемлющей схемы. С твердой верой, что законы большого и малого должны сливаться вместе в согласованное целое, физики упорно охотятся за ускользающей единой теорией. Поиск не завершен, но благодаря теории суперструн, обобщенной до М-теории, возникла, в конце концов, убедительная схема для объединения квантовой теории, обшей теории относительности, а также теорий сильного, слабого и электромагнитного взаимодействий. Изменения наших взглядов на мир, порожденные этими достижениями, фундаментальны: мы представляем себе струнные петли и вибрирующие капли, которые увлекают все элементы мироздания в танец колеблющихся мод, педантично исполняемый во Вселенной с многочисленными скрытыми измерениями, способными претерпевать экстремальные изгибы, при которых структура пространства-времени рвется и затем снова себя восстанавливает. Кто мог подумать, что слияние гравитации и квантовой механики в единую теорию материи и взаимодействий приведет к такой революции в нашем понимании устройства Вселенной?

Без сомнения, поиск законченного и удобного вычислительного формализма теории суперструн сулит еще более грандиозные сюрпризы. Уже сейчас в исследованиях по М-теории мы увидели скрывающуюся за планковской длиной новую область Вселенной, в которой, возможно, нет понятия пространства и времени. И вот противоположная крайность: мы видели, что наша Вселенная может оказаться всего лишь одним из неисчислимых пузырей пены на поверхности широкого и турбулентного космического океана мульти-вселенной. Эти рассуждения сейчас кажутся невероятными, но они могут предвещать следующий скачок в нашем понимании Вселенной.

И в то время как наши взоры обращены в будущее в предвкушении грядущих чудес, мы можем оглянуться назад и изумиться проделанному пути. Поиск фундаментальных законов Вселенной — это определенно человеческая драма, которая укрепила разум и обогатила дух людей. Вот яркое описание Эйнштейна его собственного поиска смысла гравитации: «Годы беспокойного поиска во тьме с огромной жаждой результата, чередованием уверенности и опустошения, и, наконец, прорывом к свету»8'. Без сомнения, эта фраза — свидетельство человеческой борьбы. Мы все, каждый по-своему, искатели истины, и мы все жаждем ответа на вопрос, зачем мы в этом мире. Взбираясь вместе на гору познания, физики следующих поколений крепко стоят на плечах предыдущих, смело устремляясь к вершине. Удастся ли кому-нибудь из наших потомков получить полную картину и увидеть обширную и элегантную Вселенную во всей ее ослепительной красе? Мы не можем этого предсказать. По мере того как каждое новое поколение взбирается немного выше, мы понимаем изречение Якоба Броновски: «В каждом веке есть поворотный момент, новый способ видения и признания согласованности мира»9). И так как наше поколение уже восхищается новым видением Вселенной — нашим новым способом признания согласованности мира, мы выполнили часть задачи, построив свою ступеньку на лестнице, ведущей человека к звездам.

 

Примечания

Глава 1

1. Таблица справа — расширенный вариант табл.

1.1. В нее входят массы и константы взаимодействия элементарных частиц всех трех семейств. Кварк каждого типа может обладать тремя значениями сильного заряда, которые названы (довольно причудливо) цветами. Приведенные значения константы слабого взаимодействия представляют собой, строго говоря, «третью компоненту» слабого изоспина. (Мы не привели «правосторонние» компоненты частиц — они отличаются отсутствием заряда слабого взаимодействия.)

2. Помимо показанных на рис. 1.1 петель (замкнутых струн), могут также существовать струны со свободными концами (так называемые открытые струны). Чтобы упростить изложение, в большей части книги мы ограничимся замкнутыми струнами, хотя практически все, о чем мы будем говорить, справедливо для струн обоих типов.

3. Из письма Альберта Эйнштейна к другу. Написано в 1942 г., цитируется по книге: Tony Hey, Patrick Wallers, Einstein's Mirror. Cambridge, Eng.: Cambridge University Press, 1997.

4. Steven Weinberg, Dreams of a Final Theory. New York: Pantheon, 1992, p. 52. (Рус. пер.: Вайнберг С. Мечты об окончательной теории. М: УРСС, 2004.)

5. Интервью с Эдвардом Виттеном, 11 мая 1998 г.

Глава 2

1. Присутствие массивных тел, подобных нашей Земле, усложняет картину за счет добавления гравитационных сил. Поскольку мы сфокусируем свое внимание на движении в горизонтальном, а не в вертикальном направлении, можно игнорировать присутствие Земли. В следующей главе мы подробно рассмотрим гравитацию.

2. Если выражаться более точно, 300 000 км/с — это скорость света в вакууме. Когда свет распространяется в какой-либо среде, например в воздухе или стекле, его скорость уменьшается, подобно тому, как камень, брошенный со скалы, замедляет свое движение, войдя в воду. Поскольку замедление скорости света в среде по отношению к его скорости в вакууме не оказывает никакого влияния на рассматриваемые нами релятивистские эффекты, мы будем его в дальнейшем игнорировать.

3. Для читателей, любящих математику, заметим, что эти наблюдения могут быть выражены в количественной форме. Например, если движущиеся световые часы имеют скорость и, а фотон совершает свое движение «туда и обратно» за t секунд

(по показаниям неподвижных часов), то за время, которое потребуется фотону, чтобы вернуться к нижнему зеркалу, световые часы пройдут расстояние vt. Используя теорему Пифагора, можно рассчитать длину пути по диагонали на рис. 2.3.

Она составит , где Л представляет собой расстояние между зеркалами световых часов (равное 15 см). Суммарная длина двух диагональных отрезков будет равна Поскольку скорость света является константой, которая обычно обозначается с, фотону потребуется секунд на то, чтобы пройти оба диагональных отрезка. Таким образом, у нас есть уравнение , из которого мы можем найти значение Чтобы избежать недоразумений, обозначим это

значение как , индекс у t в этом выражении указывает на то, что мы измеряем продолжительность одного цикла для движущихся часов. С другой стороны, время цикла для неподвижных часов tнеподвможно рассчитать по формуле . Используя несложные алгебраические преобразования, получим выражение , которое непосредственно свидетельствует о том, что продолжительность тика движущихся часов больше, чем у неподвижных. Это означает, что для промежутка времени между двумя выбранными событиями движущиеся часы совершат меньшее число тиков, чем неподвижные, т. е. для движущегося наблюдателя пройдет меньше времени.

4. Если опыт с ускорителем частиц, понятный узкому кругу специалистов, не выглядит для вас очень убедительным, приведем еще один пример. В октябре 1971 г. Дж. С. Хафеле, работавший в то время в университете Вашингтона в Сент-Луисе и Ричард Китинг из Военно-морской лаборатории США провели эксперимент, в ходе которого цезиевые атомные часы провели около 40 часов на борту самолетов, совершавших коммерческие авиарейсы. После того, как был учтен ряд тонких эффектов, связанных с действием гравитации (которая будет обсуждаться в следующей главе), расчеты с использованием специальной теории относительности показали, что показания движущихся часов должны быть меньше показаний неподвижных часов на несколько сотен миллиардных долей секунды. Именно такие данные и получили Хафеле и Китинг: для движущихся часов время действительно замедляет ход.

5. Хотя на рис. 2.4 правильно изображено сжатие тела в направлении движения, этот рисунок не дает представления о том, что мы в действительности увидим, если мимо нас пролетит тело, движущееся со световой скоростью (при условии, что наш глаз или фотографическое оборудование, которое мы используем, имеют достаточную разрешающую способность, чтобы вообще хоть что-то увидеть!). Чтобы увидеть что-то, глаз или камера должны получать свет, отраженный от поверхности тела. Однако, поскольку отраженный свет приходит от разных участков тела, тот свет, который мы будем видеть в каждый момент времени, будет проходить по путям различной длины. Результатом явится релятивистская иллюзия — тело будет выглядеть сократившимся по длине и повернутым.

 

Примечания 251

Частица Масса* Электрический заряд" Заряд слабого взаимодействия Заряд сильного взаимодействия
Семейство 1
Электрон 0,00054 -1 -1/2
Электронное нейтрино < !0"8 1/2
и-кварк 0,0047 2/3 1/2 красный, зеленый, синий
d-кварк 0,0074 -1/3 -1/2 красный, зеленый, синий
Семейство 2
Мюон 0,11 -1 -1/2
Мюонное нейтрино < 0,0003 1/2
с-кварк 1,6 2/3 1/2 красный, зеленый, синий
s-кварк 0,16 -1/3 -1/2 красный, зеленый, синий
Семейство 3
Тау-частица 1,9 -1 -1/2
Тау-нейтрино < 0,033 1/2
t-кварк 189,0 2/3 1/2 красный, зеленый, синий
b-кварк 5,2 -1/3 -1/2 красный, зеленый, синий

* В единицах массы протона. ** В единицах заряда протона.

 

6. Для читателей, имеющих математическую подготовку, заметим, что по 4-вектору положения в пространстве-времени можно построить 4-вектор скорости

где т — собственное время, определяемое соотношением

Тогда «скорость в пространстве-времени» будет представлять собой величину 4-вектора и,

которая равна скорости света с. Теперь уравнение

можно переписать в форме

Это показывает, что увеличение скорости тела в пространстве должно сопровождаться уменьшением величины , которая представляет собой скорость объекта во времени (скорость, с которой идут его собственные часы по отношению к скорости наших неподвижных часов dt).

 

Глава 3

1. Isaac Newton, Sir Isaac Newton's Mathematical Principle of Natural Philosophy and His System of the World, Irans. A. Motleand Florian Cajori. Berkeley: University of California Press, 1962, v. I, p. 634. (В рус. пер. см.: письмо Ньютона архиепископу Бентли от 25 февраля 1693 г. // Письма Ньютона и Ньютону. М..-ВИЕТ, 1993, №1, с. 33-45.)

2. Если говорить точнее, Эйнштейн осознал, что принцип эквивалентности сохраняется до тех пор, пока наблюдения ограничены достаточно малой областью пространства, т. е. до тех пор, пока ваше «купе» достаточно мало. Причина этого состоит в следующем. Интенсивность (и направление) гравитационных полей могут изменяться от точки к точке. Однако мы считаем, что купе в целом ускоряется как единое тело и, следовательно, это ускорение имитирует действие однородного гравитационного поля. Чем меньше будет купе, тем меньше пространство, в котором гравитационное поле может изменяться и, следовательно, тем более применимым станет принцип эквивалентности. Разность между однородным гравитационным полем, имитируемым ускорением, и возможно неоднородным «реальным» гравитационным полем, созданным совокупностью массивных тел, носит название «приливного» гравитационного поля (поскольку им объясняется влияние тяготения Луны на приливы на Земле). Подытоживая данное примечание, можно сказать, что уменьшая размер купе, можно сделать приливные гравитационные поля менее заметными и добиться того, что ускоренное движение и «реальное» гравитационное поле будут неразличимы.

3. Цитируется по книге: Albrecht Folsing, Albert Einstein. New York: Viking, 1997, p. 315.

4. John Stachel, Einstein and the Rigidly Rotating Disk. Опубликовано в General Relativity and Gravitation, ed. A. Held. New York: Plenum, 1980, p. I.

5. Анализ аттракциона Верхом на торнадо или «жесткого вращающегося диска», как он называется на более профессиональном языке, может легко привести к недоразумениям. Так, например, и по сей день нет общего согласия по ряду деталей этого примера. В тексте мы следовали духу анализа, выполненного самим Эйнштейном; в примечании мы, оставаясь на той же точке зрения, постараемся пояснить некоторые особенности, которые могут привести к недоразумениям. Во-первых, может показаться непонятным, почему длина окружности колеса не испытает лоренцевского сокращения в той же мере, что и линейка: в этом случае результат, полученный Слимом, совпадал бы с первоначальным. Здесь следует иметь в виду, что мы все время считали, что колесо непрерывно вращается и никогда не рассматривали его в состоянии покоя. Таким образом, с точки зрения неподвижных наблюдателей, единственное различие между измерениями длины окружности и измерениями Слима будет состоять в том, что линейка Слима испытала лоренцевское сокращение; колесо вращалось и во время наших измерений, и тогда, когда мы наблюдали за измерениями Слима. Видя, что линейка Слима испытала сокращение, мы понимали, что ему придется приложить ее большее число раз, чтобы пройти по всей длине окружности и, следовательно, он получит большее значение, чем мы. Лоренцевское сокращение окружности колеса можно установить, только сравнив результаты измерений на покоящемся и вращаюшемся колесе, однако такое сравнение нас не интересовало. Во-вторых, хотя нам и не требовалось анализировать аттракцион в состоянии покоя, у вас может остаться вопрос, а что случится с колесом, когда оно замедлит свое движение и остановится? Может показаться, что в этом случае следует учитывать изменение длины окружности при изменении скорости вращения, вызванное сокращением Лоренца. Но как можно согласовать это с неизменным радиусом? Это тонкая проблема, решение которой опирается на тот факт, что в реальном мире не существует абсолютно жестких тел. Тела могут растягиваться и изгибаться в ответ на испытываемое ими растяжение или сжатие. Если этого не произойдет, то, как указал Эйнштейн, диск, изготовленный путем охлаждения вращающейся отливки, может разрушиться при изменении скорости вращения. Более подробно история с жестким вращающимся диском описана в работе Стахеля4).

6. Искушенный читатель поймет, что в примере с аттракционом Верхом на торнадо, т. е. в случае равномерно вращающейся системы отсчета, искривленные трехмерные пространственные сечения, на которых мы сконцентрировали наше внимание, объединятся в четырехмерное пространство-время с нулевой кривизной.

7. Цитата Германа Минковского взята из работы: Albrecht Folsing, Albert Einstein. New York: Viking, 1997, p. 189.

8. Интервью с Джоном Уилером, 27 января 1998 г.

9. Точность существующих атомных часов достаточна для того, чтобы обнаружить столь малые и даже еще меньшие искривления времени. Например, в 1976 г. Робер Вессо и Мартин Левин из Смитсонианской астрофизической обсерватории Гарвардского университета совместно со своими коллегами из Национального управления по аэронавтике и космическим исследованиям США (NASA) установили на ракете Scout D, стартовавшей с о, Уоллопс в штате Вирджиния, атомные часы, точность которых составляет одну триллионную долю секунды в час. Они надеялись продемонстрировать, что когда ракета достигнет достаточной высоты (в результате чего уменьшится влияние гравитационного притяжения Земли), идентичные часы, расположенные на Земле (которые будут в полной мере подвергаться действию земного тяготения) будут идти медленнее. Благодаря двустороннему обмену микроволновыми сигналами исследователи смогли сравнить показания двух атомных часов и установить, что действительно, на достигнутой ракетой максимальной высоте 10000 км установленные на ней атомные часы обогнали на 4 миллиардных доли секунды часы, оставшиеся на Земле. Расхождение экспериментальных данных с результатами теоретических расчетов составило менее 0,01 %.

10. В середине XIX в. французский ученый Урбен Жан-Жозеф Леверье установил, что орбита планеты Меркурий немного отклоняется от орбиты, по которой она должна прашаться вокруг Солнца в соответствии с ньютоновским законом всемирного тяготения. В течение более чем полувека предлагались самые разные объяснения так называемой аномальной прецессии перигелия (на обычном языке, в крайних точках своей орбиты Меркурий оказывался не в том месте, в котором он должен был находиться согласно теории Ньютона). В качестве возможных причин рассматривалось гравитационное влияние неизвестной планеты или пояса астероидов, влияние неизвестного спутника, воздействие межзвездной пыли, сплюснутость Солнца, однако ни одно из этих объяснений не получило общего признания. В 1915 г. Эйнштейн рассчитал прецессию перигелия Меркурия с помощью уравнений только что открытой им общей теории относительности. Он получил результат, который по его собственному свидетельству заставил его сердце учащенно биться: значение, полученное с помощью обшей теории относительности, в точности совпадало с экспериментальными данными. Этот успех, несомненно, был одной из важных причин, заставивших Эйнштейна поверить в свою теорию, но большинство других исследователей ожидало предсказания новых явлений, а не объяснения уже известных аномалий. Более подробно эта история описана в книге: Abraham Pais. Subtle Is the Lord: The Science and the Life of Albert Einstein. New York: Oxford University Press, 1982. (Рус. пер.: Пайс А. Научная деятельность и жизнь Альберта Эйнштейна, М.: Наука, Физматлит, 1989.)

11. Robert P. Crease and Charles C.Mann, The Second Creation. New Brunswick. N. J.: Rutgers University Press, 1996, p. 39.

12. К большому удивлению ученых, недавние тщательные исследования скорости расширения Вселенной показали, что в нее может давать вклад очень небольшая, но ненулевая космологическая постоянная.

Глава 4

1. Richard Feynman, The Character of Physical Lain. Cambridge, Mass.: MIT Press, 1965, p. 129, (Рус. пер.: Феинман P. Характер физических законов. М.: Мир, 1968.)

2. Хотя работа Планка разрешила загадку бесконечной энергии, по всей видимости, не эта загадка была непосредственной причиной, побудившей его к этому исследованию. Планк пытался решить другую, очень близкую проблему, связанную с экспериментальными данными, описывающими распределение энергии в духовке (или. если быть более точным, в «черном теле») по длинам волн. Дополнительные сведения по истории этих работ интересующийся читатель может найти в книге Thomas S. Kuhn, Black-Body Theory and the Quantum Discontinuity, 1894-1912. Oxford. Eng.: Clarendon, 1978.

3. Более точно, Планк показал, что волны, минимальная энергия которых превышает их ожидаемый средний энергетический вклад (согласно термодинамике девятнадцатого века), подавляются по экспоненциальному закону. Степень подавления резко увеличивается с увеличением частоты.

4. Постоянная Планка равна 1,05 х 10"2' (г-см2)/с.

5. Timothy Ferris, Coming of Age in the Milky Way. New York: Anchor, 1989, p. 286.

6. Стивен Хокинг. Доклад на Амстердамском симпозиуме по гравитации, черным дырам и теории струн, 21 июня 1997 г.

7. Следует отметить, что с помошью фейнмановского подхода к квантовой механике можно вывести подход, основанный на волновых функциях, и наоборот; следовательно, эти два подхода полностью эквивалентны. Однако концепции, терминология и интерпретация, даваемая каждым из этих подходов, различаются очень сильно, несмотря на то, что решения, которые они дают, тождественны.

8. Richard Feynman, QED: The Strange Theory of Light and Matter. Princeton: Princeton University Press, 1988. (Рус. пер.: Феинман Р. Квантовая электродинамика: странная теория света и материи. М.: Наука, 1988 (Библиотечка «Квант». Вып. 66).)

Глава 5

1. Stephen Hawking, A Brief History of Time. New York: Bantam Books, 1988, p. 175. (Рус. пер.: Хокинг С. От Большого взрыва до черных дыр. М.: Мир, 1998.)

2. Цитируется по книге: Timolhy Ferris, The Whole Shebang. New York: Simon & Schuster, 1997, p. 97.

3. Если вы все еще озабочены тем, как вообще что-либо может происходить в пустом пространстве, вы должны понять, что соотношение неопределенностей накладывает ограничения на то, насколько «пустой» может в действительности быть область в пространстве; оно изменяет наше понимание пустого пространства. Например, применительно к волновым возмущениям поля (таким, как электромагнитные волны, распространяющиеся в электромагнитном поле) соотношение неопределенностей утверждает, что амплитуда волны и скорость изменения амплитуды связаны тем же самым отношением обратной пропорциональности, которое выполняется для положения частицы и ее скорости. Чем точнее указана амплитуда, тем менее точно мы знаем скорость, с которой она изменяется. Когда мы говорим, что область в пространстве является пустой, мы обычно имеем в виду, что, помимо всего прочего, в ней не распространяются волны и что все поля имеют нулевую интенсивность. Пользуясь грубым, но очень наглядным языком, можно перефразировать данное выражение, сказав, что амплитуды всех волн, проходящих через данную область, в точности равны нулю. Однако если амплитуды точно известны, то согласно соотношению неопределенностей это означает, что скорость изменения амплитуды является совершенно неопределенной и может принимать любое значение. Но если амплитуда изменяется, это означает, что в следующий момент она уже не может быть нулевой, даже несмотря на то, что область пространства по-прежнему остается «пустой». Опять же, в среднем поле будет нулевым, поскольку в одних областях оно будет принимать положительные значения, а в других — отрицательные; средняя суммарная энергия области не изменится. Но это верно только в среднем. Квантовая неопределенность предполагает, что энергия поля (даже в пустой области пространства) флуктуирует от больших значений к меньшим. При этом амплитуда флуктуации увеличивается по мере уменьшения расстояний и промежутков времени, и которых исследуется эта область. Согласно формуле Е = тс2 энергия, заключенная в таких кратковременных флуктуациях, может быть преобразована в массу путем мгновенного образования пары, состоящей из частицы и соответствующей античастицы, которые затем быстро аннигилируют, чтобы сохранить средний баланс энергии.

4. Даже несмотря на то. что первоначальное уравнение Шредингера (то, в котором учитывалась специальная теория относительности) не давало точного описания квантово-механических характеристик электронов в атомах водорода, ученые вскоре поняли, что это ценный инструмент при использовании в надлежащем контексте, который и сегодня еще не вышел из употребления. Однако к тому времени, как Шредингер опубликовал свое уравнение, его опередили Оскар Клейн и Уолтер Гордон, поэтому его релятивистское уравнение носит название уравнения «Клейна—Гордона».

5. Для математически подготовленного читателя заметим, что принципы симметрии, используемые в физике элементарных частиц, обычно основаны на группах, чаще всего на группах Ли. Элементарные частицы систематизируются по представлениям различных групп; уравнения, описывающие эволюцию частиц во времени, должны удовлетворять соответствующим преобразованиям симметрии. Для сильного взаимодействия такой группой симметрии является группа SU(3) (аналог обычных трехмерных вращений, но в комплексном пространстве), при этом три цветовых заряда кварка заданного типа преобразуются по трехмерному представлению. Смещение (от красного, зеленого, синего к желтому, индиго и фиолетовому), которое упомянуто в тексте, если быть более точным, представляет собой SU(3) преобразование, примененное к «цветовым координатам» кварка. Калибровочной является симметрия, в которой групповые преобразования могут зависеть от точек пространства-времени: в этом случае «вращение» цветов кварка будет происходить по-разному в различных точках пространства и в различные моменты времени.

6. При разработке квантовых теорий трех негравитационных взаимодействий физики также столкнулись с вычислениями, которые приводили к бесконечным результатам. Однако со временем ученые осознали, что от бесконечностей можно избавиться с помощью процедуры, известной как перенормировка. Бесконечности, возникающие при попытках объединить общую теорию относительности и квантовую механику, являются гораздо более серьезными, от них нельзя избавиться с помощью перенормировки. Позднее стало ясно, что бесконечные результаты сигнализируют о том, что теория используется за пределами области своей применимости. Поскольку цель исследований — «окончательная» или «последняя» теория, область применимости которой в принципе не ограничена, физики ищут теорию, в ответах которой не появлялись бы бесконечные величины, независимо от того, насколько экстремальной является анализируемая физическая система.

7. Величину планковской длины можно получить с использованием простых рассуждений, основанных на том, что физики называют размерным анализом. Идея состоит в следующем. Когда та или иная теория формулируется в виде набора уравнений, то чтобы теория приобрела связь с действительностью, абстрактным символам должны быть поставлены в соответствие физические характеристики реального мира. В частности, нужно ввести систему единиц измерения. Например, если мы обозначим некоторую длину символом а, то у нас должна быть шкала для интерпретации этого значения. В конце концов, если уравнение говорит нам, что искомая длина равна 5, мы должны знать, означает ли это 5 см, 5 км или 5 световых лет и т. п. В теории, которая включает в себя обшую теорию относительности и квантовую механику, естественный выбор единиц измерения выглядит следующим образом. В природе есть две константы, которые входят в уравнения общей теории относительности: скорость света с и ньютоновская гравитационная постоянная С Квантовая механика определяется постоянной Планка . Исследуя единицы, в которых выражены эти константы (например, с представляет собой скорость и поэтому выражается как расстояние, деленное на время, и т.п.), можно заметить, что величина имеет размерность длины; ее значение составляет 1,616 х 10--33 см. Это и есть планковская длина. Поскольку она содержит гравитационный и пространственно-временной параметры (G и с), а также квантово-механическую константу ( ), она устанавливает шкалу для измерений (естественную единицу длины) для любой теории, которая пытается объединить обшую теорию относительности и квантовую механику. Когда мы используем в тексте выражение «планковская длина», мы часто имеем в виду приближенное значение, отличающееся от 10--33 см не более чем на несколько порядков.

8. В настоящее время, помимо теории струн, активно развив






Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...



© cyberpedia.su 2017 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав

0.03 с.