Глава 9. Дымящееся ружье: экспериментальные свидетельства — КиберПедия 

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Глава 9. Дымящееся ружье: экспериментальные свидетельства



Ничто не доставило бы специалисту по теории струн большего удовольствия, чем возможность гордо предъявить миру подробный список предсказаний, поддающихся экспериментальной проверке. Действительно, не существует способа убедиться, что та или иная теория действительно описывает наш мир, не подвергнув ее предсказания экспериментальной проверке. И неважно, какие восхитительные картины рисует теория струн — если она не описывает с хорошей точностью нашу Вселенную, она имеет не больше отношения к делу, чем навороченная компьютерная игра Драконы и темницы. Эдвард Виттен с гордостью объявил, что теория струн уже сделала впечатляющее и подтвержденное экспериментально предсказание: «Теория струн обладает замечательным свойством: она предсказывает гравитацию» 1). Этим Виттен хотел сказать, что Ньютон и Эйнштейн разработали свои теории гравитации, так как наблюдения ясно показывали им, что гравитация существует и поэтому требует точного и непротиворечивого объяснения. Напротив, даже если бы физики, занимающиеся изучением теории струн, совершенно ничего не знали об общей теории относительности, они неизбежно пришли бы к ней в рамках теории струн. Благодаря существованию моды колебаний, соответствующей безмассовому гравитону со спином 2, гравитация является неотъемлемым элементом этой теории. Как сказал Виттен: «Тот факт, что гравитация является следствием теории струн, является величайшим теоретическим достижением в истории»2). Признавая, что «предсказание» правильнее было бы называть «послесказанием», так как физики дали теоретическое описание гравитации до появления теории струн, Виттен подчеркивает, что это просто историческая случайность. Какая-нибудь другая высокоразвитая цивилизация во Вселенной, фантазирует Виттен, вполне могла бы сначала открыть теорию струн, а уже после, в качестве ошеломляющего следствия, — теорию гравитации.

Однако, поскольку историю науки на нашей планете уже не перепишешь, многие считают сделанное задним числом предсказание гравитации неубедительным экспериментальным подтверждением теории струн. Большинство физиков в гораздо большей степени было бы удовлетворено одним из двух: либо чтобы теория струн дала обычное предсказание, поддающееся экспериментальной проверке, либо чтобы она дала истолкование каким-либо физическим свойствам (таким, как масса электрона или существование трех семейств элементарных частиц), для которых в настоящее время не существует объяснения. В этой главе мы расскажем, насколько далеко ученые, работающие в области теории струн, продвинулись в этом направлении.



Ирония судьбы состоит в том, что хотя потенциально теория струн обещает стать по предсказательной силе наиболее мощной из всех теорий, с которыми когда-либо имели дело ученые, способной объяснить наиболее фундаментальные свойства природы, физики до сих пор не могут делать предсказания с точностью, достаточной для сопоставления с экспериментальными данными. Представьте себе ребенка, который получил на Новый год игрушку, о которой давно мечтал, но не может ее включить, потому что в инструкции не хватает нескольких страниц. Так и современные физики, владея тем, что вполне может оказаться святым Граалем современной науки, не могут воспользоваться всей мощью этого средства, пока не напишут полное «руководство пользователя». Тем не менее, мы увидим в этой главе, что при небольшом везении одно центральное свойство теории струн может получить экспериментальное подтверждение уже в ближайшем десятилетии. А при большей удаче косвенные подтверждения могут быть получены в любой момент.

 

Перекрестный огонь критики

Истинна ли теория струн? Мы не знаем этого. Если вы разделяете веру в то, что законы физики не должны делиться на законы, управляющие макромиром, и законы, диктующие правила для микромира, а также верите, что мы не должны останавливаться, пока у нас не будет теории с неограниченной областью применимости, тогда теория струн — ваша единственная надежда. Конечно, вы можете возразить, что такое утверждение свидетельствует скорее о недостатке воображения у физиков, чем о какой-то уникальности теории струн. Возможно. Вы можете также сказать, что подобно человеку, который ищет потерянные ключи под уличным фонарем, физики столпились вокруг теории струн просто потому, что по какому-то капризу в развитии науки в этом направлении упал случайный луч прозрения. Может быть. В конце концов, если вы по натуре консерватор или любите спор ради спора, вы даже можете сказать, что физики напрасно тратят время на теорию, которая постулирует новые свойства природы в масштабе, в несколько сот миллионов миллиардов раз меньшем того, который доступен экспериментальному исследованию.



Если бы вы высказали эти упреки в середине 1980-х гг., когда возник первый всплеск интереса к теории струн, вы оказались бы в одной компании со многими самыми именитыми физиками того времени. Например, нобелевский лауреат Шелдон Глэшоу, работавший в Гарвардском университете, вместе с другим физиком Полом Гинспаргом, в то время также сотрудником Гарварда, публично обвинили теорию струн в невозможности экспериментальной проверки: «Вместо традиционного соревнования теории и эксперимента, специалисты по теории суперструн заняты поисками внутренней гармонии там, где критерием истинности являются элегантность, уникальность и красота. Само существование теории держится на магических совпадениях, чудесных сокращениях и связях между казавшихся несвязанными (и, возможно, еще и не открытыми) областями математики. Достаточно ли этих свойств, чтобы поверить в реальность суперструн? Могут ли математика и эстетика заменить и превзойти обычный эксперимент?»3)

В другом своем выступлении Глэшоу продолжил эту тему, сказав, что «...теория струн столь амбициозна, что она может быть либо целиком истинна, либо целиком ложна. Единственная проблема состоит в том, что ее математика настолько нова и сложна, что неизвестно, сколько десятилетий потребуется на ее окончательную разработку»4'.

Он даже задавался вопросом, должны ли специалисты по теории струн «получать зарплату от физических факультетов, и позволительно ли им совращать умы впечатлительных студентов», предупреждая, что теория струн подрывает основы науки, во многом так, как это делала теология в средние века5'.

Ричард Фейнман незадолго до своей смерти дал ясно понять, что он не верит в то, что теория струн является единственным средством для решения проблем, в частности, катастрофических бесконечностей, препятствующих гармоничному объединению гравитации и квантовой механики: «По моим ощущениям — хотя я могу и ошибаться — существует не один способ решения этой задачи. Я не думаю, что есть только один способ, которым мы можем избавиться от бесконечностей. Тот факт, что теория позволяет избавиться от бесконечностей, не является для меня достаточным основанием, чтобы поверить в ее уникальность»6'.

И Говард Джорджи, знаменитый коллега и сотрудник Глэшоу по Гарварду, в конце 1980-х гг. также был среди громогласных критиков теории струн: «Если мы позволим увлечь себя сладкоголосым сиренам вешающим об „окончательном" объединении на расстояниях столь малых, что наши друзья-экспериментаторы не смогут помочь нам, мы попадем в беду, поскольку лишимся ключевого процесса отметания ошибочных идей, который выгодно отличает физику от многих других менее интересных видов человеческой деятельности»7).

Как и во многих других делах большой важности, на каждого скептика приходится энтузиаст. Виттен говорил, что когда он познакомился с тем, как теория струн объединяет гравитацию и квантовую механику, это стало «величайшим интеллектуальным потрясением» в его жизни8). Кумрун Вафа, ведущий специалист по теории струн из Гарвардского университета, утверждал, что «теория струн, несомненно, дает глубочайшее понимание мироздания, которого мы когда-либо достигали»9). А нобелевский лауреат Мюррей Гелл-Манн сказал, что теория струн — «фантастическая вещь», и что он полагает, что один из вариантов этой теории однажды станет теорией всего мироздания10).

Итак, как вы могли видеть, дебаты подогревались отчасти физикой, а отчасти философскими рассуждениями о том, какой должна быть физика. «Традиционалисты» желали, чтобы теоретические работы имели тесную связь с экспериментальными наблюдениями, в духе успешной научной деятельности в течение нескольких последних столетий. Другие считали, что нам по силам взяться за проблемы, экспериментальное изучение которых находится за пределами современных технических возможностей.

Несмотря на различия в философских подходах, волна критики теории струн за последнее десятилетие существенно пошла на убыль. Глэшоу связывает это с двумя моментами. Во-первых, он заметил, что в середине 1980-х гг. «специалисты по теории струн с энтузиазмом и бьющим через край оптимизмом объявляли, что они вот-вот ответят на все вопросы физики. Сейчас, когда они стали более благоразумными, многие мои критические замечания середины 1980-х гг. потеряли свою актуальность»11).

Во-вторых, он также указал, что «мы, исследователи, работы которых не связаны с теорией струн, не добились сколько-нибудь существенного прогресса за последнее десятилетие. Поэтому аргумент, что теория струн является единственным игроком на этом поле, имеет под собой очень серьезное основание. Есть вопросы, на которые в рамках традиционной квантовой теории поля нельзя получить ответы. Это должно быть ясно. Ответы на них может дать кто-то другой, и единственный „другой", которого я знаю — это теория струн»12'.

Джорджи вспоминал свои высказывания середины 1980-х гг. примерно в том же духе: «В разные времена на начальных этапах своего развития теория струн получала завышенные оценки. В последующие годы я обнаружил, что некоторые идеи теории струн ведут к интересным выводам, которые оказались полезны в моих собственных исследованиях. Теперь я с большей радостью наблюдаю, как люди посвящают свое время исследованиям в теории струн, поскольку вижу, что она способна дать нечто полезное»13).

Теоретик Дэвид Гросс, входящий в число лидеров как в традиционной физике, так и в теории струн, красноречиво подытожил ситуацию: «Обычно, когда мы карабкались на гору природы, прокладыванием пути занимались экспериментаторы. Мы, ленивые теоретики, плелись где-то сзади. Время от времени они сбрасывали вниз экспериментальный камень, который рикошетил от наших голов. Со временем мы находили объяснение и могли продолжать наш путь, который нам перекрыли экспериментаторы. Догнав наших друзей, мы объясняли им, с чем они столкнулись, и как они туда попали. Таков был старый и легкий (по крайней мере, для теоретиков) способ восхождения на горы. Нам всем хотелось бы, чтобы эти дни снова вернулись. Но теперь мы, теоретики, должны возглавить колонну. Это будет гораздо более одинокий путь»14).

Теоретики, занимающиеся струнами, не хотят совершать одиночное восхождение на самые высокие вершины природы; они предпочли бы разделить трудности и радости со своими коллегами-экспериментаторами. Сегодняшняя ситуация вызвана отставанием технологии, историческим разрывом: теоретические канаты и крючья для последнего штурма вершины готовы (по крайней мере, частично), а экспериментальные еще не существуют. Но это вовсе не означает, что теория струн окончательно рассталась с экспериментом. Напротив, теоретики полны надежд «спихнуть вниз теоретический камень» с вершин ультравысокой энергии на головы экспериментаторов, работающих в базовом лагере. Это основная цель современных исследований в теории струн. Пока не удалось оторвать камня от вершины, чтобы запустить его вниз, но, как мы увидим ниже, несколько дразнящих и многообещающих камешков определенно удалось найти.

 

Дорога к эксперименту

Без радикальных прорывов в технологии мы никогда не сможем получить доступ к ультрамикроскопическому масштабу расстояний, необходимому для прямого наблюдения струн. На ускорителе размером несколько километров физики могут проводить исследования на расстояниях порядка одной миллиардной от одной миллиардной доли метра. Изучение меньших расстояний требует более высоких энергий и, следовательно, более крупных ускорителей, способных сфокусировать достаточное количество энергии на отдельных частицах. Поскольку планковская длина примерно на 17 порядков меньше, чем длины, которые мы можем исследовать сегодня, для того чтобы увидеть струну при использовании современных технологий, нам потребуется ускоритель размером с галактику. На самом деле Шмуль Нусинов из Тель-Авивского университета показал, что эта оценка основана на линейной экстраполяции и, по-видимому, является слишком оптимистичной; проведенный им детальный анализ показал, что потребуется ускоритель размером со всю Вселенную. (Энергия, необходимая для исследования вещества на планковских масштабах, равна примерно тысяче киловатт-часов — ее хватило бы для работы среднего кондиционера в течение тысячи часов — и не представляет из себя чего-либо особо выдающегося. Кажущаяся неразрешимой техническая проблема состоит в том, чтобы сконцентрировать всю эту энергию в отдельной частице, т. е. на отдельной струне.) После того, как конгресс США в конечном счете прекратил финансирование сверхпроводящего суперколлайдера — ускорителя с длиной окружности «всего» 87 км, вряд ли стоит ожидать, что кто-то даст деньги на строительство ускорителя для проведения исследований на планковских масштабах. Если мы собираемся проверить теорию струн экспериментально, мы должны найти косвенный метод. Мы должны определить физические следствия теории струн, которые могут наблюдаться на больших расстояниях, значительно превосходящих размер самих струн15). В своей основополагающей статье Канделас, Горовиц, Строминджер и Виттен сделали первые шаги в этом направлении. Они не только установили, что дополнительные измерения в теории струн должны быть свернуты в многообразие Калаби—Яу, но также определили следствия, которые имеет этот факт для возможных мод колебаний струн. Один из основных результатов, полученных ими, проливает свет на совершенно неожиданные решения, которые теория струн дает старым проблемам физики элементарных частиц.

Вспомним, что открытые физиками элементарные частицы разделяются на три семейства с идентичной организацией, при этом частицы каждого следующего семейства имеют все большую массу. Вопрос, на который до появления теории струн не было ответа, звучит так: «С чем связано существование семейств и почему семейств три?» Вот как отвечает на него теория струн. Типичное многообразие Калаби—Яу содержит отверстия, похожие на те, которые имеются в центре граммофонной пластинки, баранке или многомерной баранке, показанной на рис. 9.1. На самом деле, в многомерных пространствах Калаби—Яу могут иметься отверстия самых различных типов, в том числе отверстия в нескольких измерениях («многомерные отверстия»), но основную идею можно видеть и на рис. 9.1. Канделас, Горовиц, Строминджер и Виттен провели тщательное исследование влияния этих отверстий на возможные моды колебаний струн, и вот что они установили.

 

Рис. 9.1. Баранка (или тор) и ее кузены — торы с ручками

 

С каждым отверстием в многообразии Калаби—Яу связано семейство колебаний с минимальной энергией. Поскольку обычные элементарные частицы должны соответствовать модам колебаний с минимальной энергией, существование нескольких отверстий, похожих на отверстия в многомерной баранке, означает, что моды колебаний струн распадаются на несколько семейств. Если свернутое многообразие Калаби—Яу имеет три отверстия, мы обнаружим три семейства элементарных частиц16). Таким образом, теория струн провозглашает, что наблюдаемое экспериментально разделение на семейства не является необъяснимой особенностью, имеющей случайное или божественное происхождение, а объясняется числом отверстий в геометрической форме, которую образуют дополнительные измерения! Такие результаты заставляют сердца физиков биться учащенно.

Вам может показаться, что число отверстий в свернутых измерениях планковских размеров — результат, стоящий поистине на вершине скалы современной физики, — может теперь столкнуть пробный камень эксперимента вниз, в направлении доступных нам сегодня энергий. В конце концов, экспериментаторы могут определить (на самом деле, уже определили) число семейств частиц: три. К несчастью, число отверстий в каждом из десятков тысяч известных многообразий Калаби—Яу изменяется в широких пределах. Некоторые имеют три отверстия. Но другие имеют четыре, пять, двадцать пять и т. д. — у некоторых число отверстий достигает даже 480. Проблема состоит в том, что в настоящее время никто не знает, как определить из уравнений теории струн, какое из многообразий Калаби—Яу определяет вид дополнительных пространственных измерений. Если бы мы смогли найти принцип, который позволяет выбрать одно из многообразий Калаби— Яу из огромного числа возможных вариантов, тогда, действительно, камень с вершины загромыхал бы по склону в сторону лагеря экспериментаторов. Если бы конкретное пространство Калаби—Яу, выделяемое уравнениями теории, имело три отверстия, мы бы получили от теории струн впечатляющее «послесказание», объясняющее известную особенность нашего мира, которая в ином случае выглядит совершенно мистической. Однако поиск принципа выбора многообразия Калаби—Яу пока остается нерешенной проблемой. Тем не менее, и это важно, мы видим, что теория струн способна в принципе дать ответ на эту загадку физики элементарных частиц, что само по себе уже представляет значительный прогресс.

Число семейств частиц представляет собой лишь одно из экспериментальных следствий, вытекающих из геометрической формы дополнительных измерений. Благодаря влиянию на возможные моды колебаний струн, дополнительные размерности оказывают влияние на детальные свойства частиц-переносчиков взаимодействия и частиц вещества. Еще один важный пример, продемонстрированный в работе Строминджера и Виттена, состоит в том, что массы частиц в каждом семействе зависят от того — будьте внимательны, это тонкий момент, — как пересекаются и накладываются друг на друга границы различных многомерных отверстий в многообразии Калаби—Яу. Это явление с трудом поддается визуализации, но основная идея состоит в том, что когда струны колеблются в дополнительных свернутых измерениях, расположение отверстий и то, как многообразие Калаби—Яу обворачивается вокруг них, оказывает прямое воздействие на возможные моды резонансных колебаний. Детали этого явления довольно сложны и, на самом деле, не столь существенны; важно то, что как и в случае с числом семейств, теория струн дает основу для ответа на вопросы, по которым предыдущие теории хранили полное молчание, например почему электрон и другие частицы имеют те массы, которые они имеют. Однако эти вопросы также требуют знания того, какой вид имеют дополнительные измерения, свернутые в пространства Калаби—Яу.

Сказанное выше дало некоторое представление о том, каким образом теория струн может однажды объяснить приведенные в табл. 1.1 свойства частиц вещества. Физики, работающие в теории струн, верят, что таким же образом смогут однажды объяснить и свойства перечисленных в табл. 1.2 частиц, переносящих фундаментальные взаимодействия. Когда струны закручиваются и вибрируют в развернутых и свернутых измерениях, небольшая часть их обширного спектра колебаний представлена модами, соответствующими спину I или 2. Эти моды являются кандидатами на роль фундаментальных взаимодействий. Независимо от конфигурации пространства Калаби—Яу, всегда имеется одна безмассовая мода колебаний, имеющая спин 2; мы идентифицируем эту моду как гравитон. Однако точный список частиц-переносчиков взаимодействия, имеющих спин 1, — их число, интенсивность взаимодействия, которое они передают, их калибровочные симметрии очень сильно зависят от геометрической формы свернутых измерений. Таким образом, повторим, мы пришли к пониманию того, что теория струн дает схему, объясняющую существующий набор частиц, переносящих взаимодействие, т. е. объясняющую свойства фундаментальных взаимодействий. Однако, не зная точно, в какое многообразие Калаби—Яу свернуты дополнительные измерения, мы не можем сделать определенных предсказаний или «послесказаний» (выходящих за рамки замечания Виттена о «послесказании» гравитации).

Почему мы не можем установить, какое из многообразий Калаби—Яу является «правильным»? Большинство теоретиков относит это к неадекватности теоретических инструментов, используемых в теории струн. В главе 12 мы покажем более подробно, что математический аппарат теории струн столь сложен, что физики способны выполнить только приближенные вычисления в рамках формализма, известного под названием теории возмущений. В этой приближенной схеме все возможные многообразия Калаби—Яу выглядят равноправными; ни одно из них не выделяется уравнениями. Поскольку физические следствия теории струн существенно зависят от точной формы свернутых измерений, не имея возможности выбрать единственное пространство Калаби—Яу из многих возможных, нельзя сделать определенных заключений, поддающихся экспериментальной проверке. Современные исследования нацелены на разработку теоретических методов, выходящих за рамки приближенного подхода, в надежде, что помимо других выгод это выделит единственное многообразие Калаби—Яу для дополнительных измерений. В главе 13 мы рассмотрим прогресс, достигнутый в этом направлении.

 

Перебирая возможности

Вы можете и так поставить вопрос: пусть неизвестно, какое из пространств Калаби— Яу выбирает теория струн, но позволяет ли какой-нибудь выбор получить физические характеристики, которые согласуются с наблюдаемыми? Другими словами, если мы рассчитаем физические характеристики, которые дает каждое возможное многообразие Калаби—Яу, и соберем их в один гигантский каталог, сможем ли мы найти среди них то, которое соответствует действительности? Это важный вопрос, однако есть две серьезные причины, по которым на него нельзя дать исчерпывающего ответа.

Разумно было бы начать исследование, ограничившись только теми пространствами Калаби—Яу, которые дают три семейства частиц. Это значительно сокращает список возможных вариантов. Однако обратите внимание: мы можем деформировать тор с ручками из одной формы во множество других — на самом деле, в бесконечное множество — без изменения числа отверстий. На рис. 9.2 мы показали одну такую деформацию формы, приведенной в нижней части рис. 9.1. Аналогично можно взять пространство Калаби—Яу с тремя отверстиями и плавно изменить его форму без изменения числа отверстий, опять же через бесконечное число промежуточных форм. (Когда выше мы говорили о десятках тысяч многообразий Калаби—Яу, мы уже сгруппировали все те многообразия, которые могут быть преобразованы друг в друга путем таких плавных деформаций, и учитывали такие группы как одно пространство Калаби—Яу.) Проблема состоит в том, что физические свойства колебаний струн, а также соответствующие им массы и константы взаимодействий, очень сильно зависят от подобных детальных изменений вида многообразия, а у нас, опять же, нет критериев для того, чтобы отдать одной из этих конкретных возможностей предпочтение перед другими. И неважно, сколько аспирантов усадят за эту работу профессора физики, невозможно перебрать все альтернативы, соответствующие бесконечному списку различных пространств.

 

 

Рис. 9.2. Мы можем различными способами изменить форму тора с ручками, не меняя количества отверстий в нем; здесь показан один из таких способов

 

Осознание этого побудило специалистов по теории струн исследовать физику, порождаемую выборкой из возможных многообразий Калаби—Яу. Но даже в этом случае ситуация остается непростой. Приближенные уравнения, используемые учеными в настоящее время, имеют недостаточную мощность для того, чтобы получить полную и точную физическую картину, которую дает выбранное многообразие Калаби—Яу. Эти уравнения позволяют значительно продвинуться вперед в отношении приблизительной оценки свойств колеблющейся струны, которые, как мы надеемся, будут соответствовать наблюдаемым частицам. Но точные и определенные физические вопросы, подобные тому, какова масса электрона или интенсивность слабого взаимодействия, требуют уравнений, точность которых намного превосходит ту, которую дают современные приближенные схемы. Вспомните главу 6 и пример с Верной ценой, где говорилось, что «естественным» мерилом энергии в теории струн является планковская энергия, и только благодаря необычайно точному механизму сокращений теория струн способна дать моды колебаний, массы которых близки к массам известных частиц вещества и частиц, переносящих взаимодействие. Искусные сокращения требуют точных расчетов, поскольку даже небольшие погрешности могут оказать большое влияние на результат. Как мы увидим в главе 12, в середине 1990-х гг. физики смогли добиться значительного прогресса в выходе за рамки современных приближенных уравнений, хотя сделать предстоит еще немало.

Итак, где же мы находимся? Да, мы столкнулись с проблемой отсутствия фундаментального критерия выбора конкретного многообразия Калаби—Яу. Да, у нас нет теоретических средств, необходимых для вывода наблюдаемых характеристик, соответствующих такому выбору. Но мы можем спросить, а есть ли в каталоге пространств Калаби—Яу какие-либо элементы, которые дают картину мира, в основном согласующуюся с наблюдениями? Ответ на этот вопрос звучит достаточно обнадеживающе. Хотя большинство элементов каталога дают картину, которая существенно отличается от нашего мира (в ней, помимо всего прочего, другое число семейств элементарных частиц, а также иные типы и константы фундаментальных взаимодействий), небольшое число многообразий дает физическую картину, которая на качественном уровне близка к наблюдаемой в реальности. Таким образом, существуют примеры пространств Калаби—Яу, приводящие к колебательным модам струн, подходящим для частиц стандартной модели, если выбирать эти пространства в качестве свернутых измерений, существование которых требуется в теории струн. И, что имеет первостепенную важность, теория струн успешно встраивает гравитационное взаимодействие в квантово-механическую схему.

Для современного уровня понимания это лучшее, на что мы могли рассчитывать. Если бы многие многообразия Калаби—Яу давали примерное совпадение с экспериментальными данными, связь между конкретным выбором и наблюдаемой физической картиной была бы менее убедительной. Когда предъявляемым требованиям соответствуют многие варианты, ни один из них нельзя выделить даже с привлечением экспериментальных данных. С другой стороны, если бы ни одно многообразие Калаби—Яу не давало ничего даже отдаленно похожего на наблюдаемую физическую картину, мы могли бы сказать, что теория струн, конечно, прекрасная теоретическая структура, но она, по-видимому, не имеет отношения к нашему миру. То, что даже при наших весьма скромных современных способностях определения детальных физических следствий удалось найти небольшое число пригодных пространств Калаби—Яу, является чрезвычайно обнадеживающим фактом.

Объяснение свойств элементарных частиц и частиц-переносчиков фундаментальных взаимодействий было бы одним из великих, если не величайшим научным достижением. Тем не менее, у вас может возникнуть вопрос, существуют ли предсказания теории струн, в противоположность «послесказаниям», которые физики-экспериментаторы могут попытаться подтвердить уже сегодня или хотя бы в обозримом будущем. Такие предсказания есть.

 

Суперчастицы

Препятствия на пути теоретических исследований, которые не позволяют в настоящее время использовать теорию струн для получения детальных предсказаний, вынуждают нас к поиску не конкретных, а общих свойств Вселенной, состоящей из струн. В этом контексте слово «общие» указывает на характеристики, которые являются столь фундаментальными, что они мало чувствительны к тонким свойствам теории, которые в настоящее время недоступны для теоретического анализа или вообще не зависят от них. К таким характеристикам можно относиться с доверием, даже если мы не достигли полного понимания всей теории. В последующих главах мы обратимся к другим примерам, а сейчас сконцентрируем внимание на суперсимметрии.

Как мы уже отмечали, фундаментальное свойство теории струн состоит в том, что она обладает высокой симметрией, объединяя в себе не только наши интуитивные принципы симметрии, но и максимальное, с точки зрения математики, расширение этих принципов — суперсимметрию. Как говорилось в главе 7, это означает, что моды колебаний струны реализуются парами суперпартнеров, спин которых отличается на 1/2. Если теория струн верна, то некоторые из колебаний струн будут соответствовать известным частицам. Парность, связанная с суперсимметрией, позволяет теории струн сделать предсказание, что у каждой известной частицы имеется суперпартнер. Мы можем определить константы взаимодействия, которые должна иметь каждая из этих суперчастиц, однако в настоящее время не способны предсказать их массы. Но даже несмотря на это, предсказание существования суперпартнеров является общей особенностью теории струн; это свойство теории струн является истинным независимо от тех характеристик, которые пока не разработаны окончательно.

До настоящего времени никому не удавалось наблюдать суперпартнеров элементарных частиц. Это может означать, что они не существуют, и теория струн неверна. Однако по мнению многих специалистов по физике элементарных частиц это связано с тем, что суперпартнеры являются очень тяжелыми и поэтому не могут быть обнаружены на тех экспериментальных установках, которыми мы располагаем сегодня. В настоящее время физики сооружают гигантский ускоритель вблизи г. Женева в Швейцарии, получивший название Большого адронного коллайдера*'. Есть надежда, что мощность этой установки будет достаточна для открытия частиц-суперпартнеров. Ускоритель должен вступить в действие к 2010 г., и вскоре после этого суперсимметрия может получить экспериментальное подтверждение. Как сказал Шварц: «До открытия суперсимметрии осталось ждать не так уж долго. И когда это случится, это будет волнующее событие»17).

 

*) В оригинале Large Hadron Collider. Коллайдер — ускоритель на встречных пучках, а адроны — частицы, участвующие в сильном взаимодействии. — Прим. перев.

 

Есть, однако, два момента, о которых следует помнить. Даже если частицы-суперпартнеры будут обнаружены, один этот факт недостаточен для того, чтобы утверждать истинность теории струн. Как мы видели выше, хотя суперсимметрия была открыта в ходе работ над теорией струн, она может быть успешно включена в теории, основанные на точечной модели частиц и, следовательно, не является уникальным признаком теории струн. И обратно, если даже частицы-суперпартнеры не будут обнаружены с помощью Большого адронного коллайдера, один этот факт еще не позволяет отрицать теорию струн, поскольку он может быть связан с тем, что суперпартнеры слишком тяжелы, чтобы их можно было обнаружить на такой установке.

Тем не менее, если частицы-суперпартнеры будут обнаружены, несомненно, это будет сильное и вдохновляющее свидетельство в пользу теории струн.

 






Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...



© cyberpedia.su 2017 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав

0.022 с.