Технологическая классификация способов — КиберПедия 

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Технологическая классификация способов

2019-08-04 113
Технологическая классификация способов 0.00 из 5.00 0 оценок
Заказать работу

ТЕХНОЛОГИЧЕСКАЯ КЛАССИФИКАЦИЯ СПОСОБОВ

ПАЙКИ

 

Для осуществления пайки, прежде всего, необходимы припой, его физический контакт с паяемым металлом в жидком состоянии и физико-химическое взаимодействие между ними при заполнении зазора в процессе нагрева по термическому циклу с последующей кристаллизацией паяного шва. В соответствии с этим классификационными признаками первой группы способов пайки (СП1) являются метод получения и полнота расплавления припоя, способ заполнения паяльного зазора припоем и условия кристаллизации паяного шва.

Припой может быть изготовлен заранее (готовый припой), а может образоваться в процессе пайки в результате контактно-реактивного плавления (контактно-реактивный припой), контактного твердогазового плавления (контактный твердогазовый припой), в результате высаживания жидкого металла из компонентов флюса (реактивно-флюсовый припой). В соответствии с этим различают контактно-реактивную пайку, контактную твердогазовую пайку и реактивно-флюсовую пайку.

Появление в технике крупногабаритных тонкостенных узлов с большой площадью пайки все более затрудняло возможность сборки деталей с равномерными капиллярными зазорами между криволинейными поверхностями, что приводило к развитию непропаев, снижению высоты поднятия припоя в зазорах (вертикальных и наклонных) и др. В связи с этим получила развитие композиционная пайка — пайка с композиционным припоем, состоящим из наполнителя и легкоплавкой составляющей, в частности, металло-керамическим припоем.

По характеру затекания припоя в зазор различают капиллярную (ширина зазора <0,5 мм) и некапиллярную (ширина зазора <0,5 мм) пайку. При капиллярной пайке припой заполняет зазор самопроизвольно под действием капиллярных сил.

При некапиллярной пайке использована возможность поднятия жидкого припоя в зазорах под действием гравитации, отрицательного давления в некапиллярном зазоре (при откачке воздуха из зазора), магнитных и электромагнитных и других внешне приложенных сил.

После заполнения зазора припоем паяный шов затвердевает в процессе охлаждения изделия (кристаллизация при охлаждении). При температуре выше температуры солидуса припоя процесс кристаллизации шва может происходить и в результате отвода депрессата или легкоплавкой составляющей припоя из шва (диффузионная пайка).

Жидкий припой смачивает только чистую поверхность паяемого металла. В связи с этим при формировании паяного соединения необходимы условия, обеспечивающие физический контакт паяемого материала и жидкого припоя при температуре пайки. Осуществление такого контакта возможно в местах удаления с поверхности металла оксидных пленок. Удалить оксидные пленки при пайке и осуществить физический контакт конструкционного материала (Мк) с припоем к) можно с применением паяльных флюсов или без них. В последние годы высокие требования по коррозионной стойкости паяных соединений и стремление к сокращению времени технологических операций привели к расширению применения способов бесфлюсовой пайки. Флюсовая пайка наряду с этим остается во многих случаях также широко применяемым процессом. По физическим, химическим и электрохимическим признакам, определяющим процесс удаления оксидов с поверхности основного металла и припоя при пайке, способы пайки объединены в группу СП2.

Способы пайки по источнику нагрева объединены в группу СПЗ. К способам пайки этой группы, применяемым ранее (паяльником, горелкой, электросопротивлением, в печи, погружением в расплавы флюса или припоя, индукционному, электролитному), добавились новые с использованием источников нагрева в виде света, лазера, теплоты химических реакций, потока ионов в тлеющем разряде, инфракрасного излучения, волны припоя, электронного луча, теплоты конденсирования паров и др.

Различают низко- и высокотемпературную пайку. За граничную температуру этих способов принята температура 450 °С. Целесообразность такого деления обусловлена тем, что технологические, вспомогательные материалы и оснащение для низкотемпературной и высокотемпературной пайки обычно существенно отличаются. Классификационным признаком четвертой группы способов пайки СП4 является отсутствие при фиксированном зазоре или наличие давления на паяемые детали с целью обеспечения заданной величины паяльного зазора (прессовая пайка).

Классификационным признаком пятой группы способов СП5 служит одновременность или неодновременность выполнения паяных соединений изделия.

Технологическая классификация способов пайки базируется в основном на альтернативности их признаков. На рис. 2 дана технологическая классификация способов пайки (ГОСТ 17349—79). В наименование способа пайки конкретного изделия должны войти по одному или несколько наименований способов из каждой группы и в том же порядке, в каком они перечислены на рис. 2. Например, «контактно-реактивная капиллярная диффузионная печная пайка в вакууме под давлением».


Готовые припои

 

Наиболее широкое применение при пайке нашли готовые припои. Готовые припои классифицируют по следующим признакам (ГОСТ 19250—73): по величине их температурного интервала плавления; степени расплавления при пайке; основному или наиболее дефицитному компоненту, способности к самофлюсованию; способу изготовления и виду полуфабрикатов (рис. 3).

Температурный интервал плавления припоя — важнейший классификационный признак. Такой интервал ограничен температурой начала (солидус) и конца (ликвидус) плавления припоя. По температуре конца расплавления припои разделяют на пять классов: особолегкоплавкие (tпл £ 145°С); легкоплавкие (145°С<tпл<450°С); среднеплавкие (450 °C < 1100 °С); высокоплавкие (1100 °С<tпл< 1850 °С); тугоплавкие (tпл ³ 1850 °С).

Число различных припоев, разработанных к настоящему времени, весьма велико и продолжает непрерывно увеличиваться, что обусловлено повышением требований, предъявляемых к механическим и служебным свойствам паяных соединений, и необходимостью улучшения паяемости существующих и новых материалов.

Классификация готовых припоев по степени их автономного расплавления. По степени автономного расплавления при пайке припои подразделяют на полностью и частично расплавляемые. Ранее применяли главным образом припои, полностью расплавляемые при пайке. Исключение составляли припои, применяемые в стоматологической технике, и частично расплавляемые припои с широким интервалом затвердения, которые использовали главным образом при абразивной пайке.

В 60-е и последующие годы получили развитие неоднородные, частично расплавляемые припои, состоящие из легкоплавкой части припоя и твердого наполнителя, не плавящегося автономно при температуре пайки. Такие припои в соответствии с современной классификацией металлических материалов называют композиционными.

Наполнитель композиционных припоев чаще всего представляет собой порошок, перемешанный с порошком легкоплавкой части припоя. При пайке таким припоем сцепление частиц наполнителя в шве и шва с паяемым металлом возникает в результате взаимодействия последнего с жидкой частью припоя и ее кристаллизации, а также в результате спекания наполнителя между собой и с паяемым металлом. Ранее композиционный припой такого типа был условно назван металлокерамическим, а пайка металлокера-мической, так как при ней имеют место процессы спекания, аналогичные процессам в порошковой металлургии

В композиционных припоях другого вида наполнитель может состоять из проволоки, сетки, стержней, волокон. При этом легкоплавкая часть припоев может быть скомпонована с наполнителем путем равномерного их перемешивания, прессования, штамповки, спекания или иметь вид порошка из частиц наполнителя, предварительно смоченных легкоплавкой составляющей припоя (армированные припои).

 

Электропечи

Печи сопротивления — наиболее распространенный вид нагревательного оборудования, применяемого в производстве паяных изделий. Печи сопротивления разделяют по следующим основным признакам:

1) по роду работы и конструктивным признакам — на печи периодического (камерные, шахтные и колпаковые) и непрерывного (конвейерные, толкательные и карусельные) действия;

2) по атмосфере в рабочем пространстве — на печи с окислительной (воздушной) средой, с контролируемыми (защитными или восстановительными) атмосферами и вакуумные;

3) по рабочей температуре — на низко температурные (до 450 °С), среднетемпературные (до 1100°С) и высокотемпературные (до 1600 °С).

В электропечах периодического действия паяемое изделие через загрузочное отверстие (окно) помещают в. рабочее пространство, в котором изделие, как правило, неподвижно в течение нагрева и выдержки при температуре пайки. Выгружают изделие из печи через то же отверстие.

Камерные печи просты по конструкции, универсальны и позволяют варьировать параметры температурно-временного режима пайки в широких диапазонах. К недостаткам камерных печей относятся трудность обеспечения равномерного нагрева по всему объему рабочего пространства и создания в печи газовой среды заданного состава при кратковременных режимах пайки, сложность механизации загрузки и выгрузки.

Печи сконвективной теплоотдачей снабжены вентиляторами, создающими принудительную циркуляцию газового теплоносителя в рабочем пространстве.

Печи, рассчитанные на работу с контролируемыми атмосферами и в вакууме, полностью герметизированы.

В электропечах непрерывного действия паяемые изделия с помощью транспортирующего устройства передвигаются от загрузочного окна к разгрузочному, нагреваясь до заданной температуры. Печи непрерывного действия имеют большую производительность и их сравнительно просто компоновать в поточные и автоматические линии.

Печи, как правило, имеют несколько тепловых зон с самостоятельным регулированием температуры, что позволяет с достаточной точностью выдерживать различные графики нагрева изделия. Обычно протяженность тепловой зоны составляет 1,5—2 м, но при необходимости получения точной температуры на небольшом участке размеры зон уменьшают до 1 м. Температура в зонах колеблется в пределах 10—15 °С. В случае необходимости печи комплектуют камерами охлаждения. В зависимости от скорости охлаждения камеры охлаждения конструктивно могут быть выполнены с водоохлаждаемыми стенками, с водоохлаждаемыми стенками и вентиляторами, с обрызгиванием изделия (допустимо при работе в воздушной атмосфере), с футерованными стенками (без нагревателей или с ними).

Печи непрерывного действия рассчитаны на работу в окислительной (воздушной) и контролируемых атмосферах. В последнем случае камеры нагрева и охлаждения выполнены герметичными, для чего они снабжены загрузочными и разгрузочными шлюзовыми камерами. По типу транспортирующего устройства электропечи непрерывного действия подразделяют на конвейерные и карусельные.

Конвейерные печи применяют для пайки мелких и средних изделий массового и крупносерийного производства. По плоскости перемещения изделий печи бывают горизонтальные и вертикальные. Вертикальные печи занимают меньшую площадь, однако не нашли широкого применения вследствие неравномерности распределения температуры по высоте печи, необходимости устройств для крепления изделий и сложности обслуживания, хотя они и удобны для пайки однотипных изделий.

Преимущество карусельных печей заключается в возможности использования их при высоких температурах, так как несущая часть подины может быть выполнена керамической, а рабочая камера печи не имеет металлических деталей, ограничивающих температуру нагрева.

В карусельных печах можно нагревать изделия сложной конфигурации без поддонов, что не всегда возможно в конвейерных печах. Недостатки карусельных печей заключаются в трудности механизации и неудобстве использования их в поточных линиях из-за того, что загрузочные окна расположены рядом.

Для пайки в контролируемых атмосферах используют печи, оконные проемы которых снабжены пламенной завесой.

Вакуумные электропечи подразделяют на садочные и методические.

Садочные печи, как правило, предназначены для единичного или серийного производства. В таких печах изделие в течение всего цикла остается неподвижным, а его загрузку и выгрузку осуществляют через одно окно.

Методические печи предназначены для массового производства; в них паяемое изделие в процессе пайки перемещается непрерывно или дискретно от загрузочного окна к разгрузочному. Существует также группа печей полунепрерывного действия, представляющих собой соединения нескольких камер, через которые последовательно проходит паяемое изделие. К подобному соединению относятся, например, сочетания камер загрузки, предварительного нагрева, рабочей и охлаждения. В этих печах, как и в методических, загрузку и выгрузку осуществляют через вакуумные шлюзы, но перемещение изделия здесь всегда дискретно.

По рабочей температуре вакуумные печи разделяют на среднетемпературные (1100—1200 °С) и высокотемпературные (> 1200 °С), а по остаточному давлению в рабочей камере — на низковакуумные (до 13,3 Па), средневакуумные (13,3 —1,ЗЗХ10-1 Па), высоковакуумные (1,33-10-2—1,33-10-4 Па) и сверхвысоковакуумные (ниже 1,33х10-4 Па). За основной параметр садочных печей приняты размеры рабочего пространства, а методических — размеры прохода вакуумных технологических затворов шлюзовых камер.

Главное требование, предъявляемое к футеровке вакуумных печей,— хорошая способность к дегазации. Поэтому в этих печах широко применяют экранную теплоизоляцию; в случае использования огнеупорных и теплоизоляционных материалов число экранов сводят до минимума. В печах с рабочим давлением до 1,33-10-1 Па допустимо применение керамической футеровки, а с давлением 1.33-10-2 Па и ниже используют металлическую экранную изоляцию.

Для обеспечения длительной и надежной работы нагревателей из тугоплавких металлов необходимо, чтобы при нагреве давление в печи постоянно поддерживалось не выше 1,33-10-1 - 1,33-10-2 Па, а величина натекания была минимальной.

В паяльном производстве среди садочных печей наибольшее распространение получили камерные, шахтные и колпаковые печи.

При пайке в обычных муфельных печах изделие помещают в металлический контейнер, внутри которого создают вакуум. К контейнеру подсоединяют откачную систему. Поскольку в контейнере, кроме паяемого изделия, нет других предметов, требующих обезвоживания, он может быть откачан быстро и до высокого вакуума. Однако муфельные печи работают при сравнительно низких температурах (800—1100°С); прочность разогретого муфеля невелика. Кроме того, при высоких температурах увеличивается диффузия воздуха через сварные швы и стенки муфеля.

Электронагревательные ванны

 

Для нагрева изделий под пайку путем теплопередачи от нагретых жидкостей — масла, расплавленных солей и щелочей применяют электронагревательные ванны. В паяльном производстве наибольшее распространение получили соляные ванны цилиндрической или прямоугольной формы с внешним или внутренним обогревом. Внутренний обогрев осуществляется электродными или трубчатыми электронагревателями (ТЭН). По рабочей температуре соляные ванны подразделяют на ванны с температурой до 650, 850, 1300 °С.

Электронагревательные ванны обладают следующими преимуществами перед печами сопротивления: 1) высокой равномерностью нагрева изделий вследствие значительно большей теплопроводности жидкости по сравнению с теплопроводностью газов; 2) высокой скоростью нагрева изделия благодаря высоким значениям коэффициента теплоотдачи от жидкости к металлу; 3) большой производительностью; 4) защитой изделий от окисления; изделия в процессе нагрева и выдержки изолированы от воздушной среды и при извлечении из ванны покрыты тонким слоем соли или флюса.

К недостаткам нагрева в электронагревательных ваннах следует отнести: 1) большой удельный расход электроэнергии из-за повышенных тепловых потерь зеркалом ванны; 2) необходимость непрерывной эксплуатации из-за сложности и длительности разогрева до рабочего состояния; 3) тяжелые и вредные условия труда; 4) необходимость очистки изделий от соли или флюса; 5) большой расход соли или флюса и необходимость предварительной сушки их перед загрузкой.

Ванны с внутренним обогревом по сравнению с ваннами с внешним обогревом меньше по габаритам, имеют меньшие теплопотери и меньший удельный расход электроэнергии. Кроме того, для селитровых ванн внутренний обогрев более безопасен, так как при этом менее вероятен перегрев дна ванны из-за загрязнения нижних слоев селитры. Недостаток такого обогрева состоит в малом сроке службы нагревательных элементов, вследствие эрозии трубчатого кожуха нагревателя при высоких температурах. Более экономичен электродный нагрев, так как при этом имеется возможность передвигать электроды по мере сгорания, что увеличивает срок их службы. Одновременно конструкция таких электродов обеспечивает электромагнитную циркуляцию соли в ванне. Соляные ванны питаются через понижающий трансформатор.

 

Горелки

При ручной пайке высокотемпературными припоями (изделия нагревают газовыми горелками. В качестве горючих газов в них используют ацетилен, пропан-бутановую смесь, метан (природный газ), коксовый и «городской» газ, а также пары бензина и керосина.

I Окислителем для горючих газов служат кислород и воздух. Конструктивно горелка представляет собой ручку с двумя запорно-регулирующими вентилями и наконечник. Горючий газ и окислитель подаются раздельно по шлангам. Наконечник - сменный узел — состоит из смесительной камеры и сопла (мундштука). По способу подачи горючего газа горелки подразделяют на инжекторные (низкого давления 1—4 кПа) и безынжекторные (высокого давления 40—100 кПа). Мощность пламени (предел устойчивого горения) определяется объемом смесительной камеры и диаметром сопла и регулируется изменением давления кислорода (в инжекторных горелках) или обоих газов (в безынжекторных горелках). Наличие сменных наконечников позволяет использовать одну горелку для пайки металлов различных тол- шин и теплофизических свойств.

Паяльник

Это нагревательное устройство, используемое при низкотемпературной пайке. Рабочим элементом паяльника служит наконечник (жало).

По способу нагрева наконечника различают паяльники непрерывного и периодического действия: Непрерывный нагрев наконечника осуществляют газовым, бензиновым, керосиновым пламенем, а также электрическим током. В электропаяльниках нагревательный элемент располагается с внешней стороны наконечника или внутри него. В условиях серийного и массового производства электропаяльники снабжены устройствами, обеспечивающими механическую, полуавтоматическую и автоматическую подачу припоя.

В паяльниках периодического действия наконечник нагревают внешним источником теплоты или встроенным в паяльник источником, работающим в импульсном режиме.

При низкотемпературной пайке металлов со стойкой оксидной пленкой применяют специальные паяльники — ультразвуковые и абразивные, а также с вибрирующей щеткой. К высокотемпературным паяльникам, обеспечивающим разогрев наконечника до 900 °С, относятся паяльники с плазменным нагревом. Технические данные паяльников приведены в работе.


5. ЗАКЛЮЧЕНИЕ. ЗНАЧЕНИЕ ПРОЕКТИРОВАНИЯ ТЕХНОЛОГИИ ПАЙКИ ИЗДЕЛИЙ ПРИ ПОДГОТОВКЕ ПРОИЗВОДСТВА

 

В последние годы условия разработки технологии пайки при подготовке производства существенно усложнились. Причины этого — в быстром расширении номенклатуры паяемых изделий, дальнейшем усложнении их конструкционных особенностей, повышении и расширении требований к эксплуатационным характеристикам, увеличении разнообразия используемых в паяных изделиях сплавов, а также в необходимости существенного ускорения подготовки производства и перехода к гибким производственным системам (ГПС).

Технология пайки изделий все шире базируется на успехах ряда смежных фундаментальных и технических наук— химии, физической химии (особенно такого ее раздела, как термодинамика), физики металлургии, теории прочности, металловедения, что стимулирует исследование процессов пайки и расширяет ее технологические возможности в производстве. Результаты всех этих исследований облегчают оптимизацию проектирования технологии пайки.

Кроме чисто технологического аспекта проблемы проектирования технологии пайки, необходимо учитывать аспекты технико-экономические, связанные с учетом стоимости и дефицитности применяемых материалов для пайки (припоев, флюсов, газовых сред и др.), норм их расхода, стоимости и производительности оборудования, средств автоматизации, механизации и роботизации, а также экологические аспекты, связанные с необходимостью сохранения окружающей среды в связи с токсичностью многих компонентов припоев, газовых сред, флюсов.

Проектирование технологии и технологических процессов до недавнего времени производилось только эвристическими методами. Вместе с тем быстрый рост информации в области теории, технологии и оборудования пайки, затрудняющий ее быструю переработку, приводит к использованию неполных данных и существенно зависит от эрудиции технолога. При этом многие достижения в области паяльного производства остаются неучтенными, выбранная технология — неоптимальной, а процесс разработки — длительным.

Вследствие быстрого роста объемов информации возможности ее переработки, накопления и использования при выборе технологии пайки изделий стали превосходить возможности не только одного человека, но и достаточно широкого круга технологов, работающих над изделием. Поэтому возникла необходимость использования для этой цели памяти ЭВМ. Это тем более необходимо, что при разработке технологии в процессе подготовки производства приходится сталкиваться с множеством альтернативных решений, что без использования ЭВМ затрудняет оптимизацию технологии и технологических процессов. Эта проблема достаточно сложна.


ПРИЛОЖЕНИЕ

 

 



СПИСОК ЛИТЕРАТУРЫ

 

1. Вологдин В.В. Индукционная пайка. 5-е изд. Л: Машиностроение, 1989

2. Гладков А.С. Пайка деталей электровакуумных приборов. М.: Энергия, 1987

3. Гржимальский Л.Л., Ильевский И.И. Технология и оборудование пайки, М.: Машиностроение, 1980

4. Губин А.И. Пайка нержавеющих сталей и жаропрочных сталей. М.: Машиностроение, 1982

5. Лошко Н.Ф. Пайка металлов М.: Машиностроение, 1967

6. Стеклов О.И., Лапшин Л.Н. Коррозионно-механическая стойкость паяных соединений. М.: Машиностроение, 1981

ТЕХНОЛОГИЧЕСКАЯ КЛАССИФИКАЦИЯ СПОСОБОВ

ПАЙКИ

 

Для осуществления пайки, прежде всего, необходимы припой, его физический контакт с паяемым металлом в жидком состоянии и физико-химическое взаимодействие между ними при заполнении зазора в процессе нагрева по термическому циклу с последующей кристаллизацией паяного шва. В соответствии с этим классификационными признаками первой группы способов пайки (СП1) являются метод получения и полнота расплавления припоя, способ заполнения паяльного зазора припоем и условия кристаллизации паяного шва.

Припой может быть изготовлен заранее (готовый припой), а может образоваться в процессе пайки в результате контактно-реактивного плавления (контактно-реактивный припой), контактного твердогазового плавления (контактный твердогазовый припой), в результате высаживания жидкого металла из компонентов флюса (реактивно-флюсовый припой). В соответствии с этим различают контактно-реактивную пайку, контактную твердогазовую пайку и реактивно-флюсовую пайку.

Появление в технике крупногабаритных тонкостенных узлов с большой площадью пайки все более затрудняло возможность сборки деталей с равномерными капиллярными зазорами между криволинейными поверхностями, что приводило к развитию непропаев, снижению высоты поднятия припоя в зазорах (вертикальных и наклонных) и др. В связи с этим получила развитие композиционная пайка — пайка с композиционным припоем, состоящим из наполнителя и легкоплавкой составляющей, в частности, металло-керамическим припоем.

По характеру затекания припоя в зазор различают капиллярную (ширина зазора <0,5 мм) и некапиллярную (ширина зазора <0,5 мм) пайку. При капиллярной пайке припой заполняет зазор самопроизвольно под действием капиллярных сил.

При некапиллярной пайке использована возможность поднятия жидкого припоя в зазорах под действием гравитации, отрицательного давления в некапиллярном зазоре (при откачке воздуха из зазора), магнитных и электромагнитных и других внешне приложенных сил.

После заполнения зазора припоем паяный шов затвердевает в процессе охлаждения изделия (кристаллизация при охлаждении). При температуре выше температуры солидуса припоя процесс кристаллизации шва может происходить и в результате отвода депрессата или легкоплавкой составляющей припоя из шва (диффузионная пайка).

Жидкий припой смачивает только чистую поверхность паяемого металла. В связи с этим при формировании паяного соединения необходимы условия, обеспечивающие физический контакт паяемого материала и жидкого припоя при температуре пайки. Осуществление такого контакта возможно в местах удаления с поверхности металла оксидных пленок. Удалить оксидные пленки при пайке и осуществить физический контакт конструкционного материала (Мк) с припоем к) можно с применением паяльных флюсов или без них. В последние годы высокие требования по коррозионной стойкости паяных соединений и стремление к сокращению времени технологических операций привели к расширению применения способов бесфлюсовой пайки. Флюсовая пайка наряду с этим остается во многих случаях также широко применяемым процессом. По физическим, химическим и электрохимическим признакам, определяющим процесс удаления оксидов с поверхности основного металла и припоя при пайке, способы пайки объединены в группу СП2.

Способы пайки по источнику нагрева объединены в группу СПЗ. К способам пайки этой группы, применяемым ранее (паяльником, горелкой, электросопротивлением, в печи, погружением в расплавы флюса или припоя, индукционному, электролитному), добавились новые с использованием источников нагрева в виде света, лазера, теплоты химических реакций, потока ионов в тлеющем разряде, инфракрасного излучения, волны припоя, электронного луча, теплоты конденсирования паров и др.

Различают низко- и высокотемпературную пайку. За граничную температуру этих способов принята температура 450 °С. Целесообразность такого деления обусловлена тем, что технологические, вспомогательные материалы и оснащение для низкотемпературной и высокотемпературной пайки обычно существенно отличаются. Классификационным признаком четвертой группы способов пайки СП4 является отсутствие при фиксированном зазоре или наличие давления на паяемые детали с целью обеспечения заданной величины паяльного зазора (прессовая пайка).

Классификационным признаком пятой группы способов СП5 служит одновременность или неодновременность выполнения паяных соединений изделия.

Технологическая классификация способов пайки базируется в основном на альтернативности их признаков. На рис. 2 дана технологическая классификация способов пайки (ГОСТ 17349—79). В наименование способа пайки конкретного изделия должны войти по одному или несколько наименований способов из каждой группы и в том же порядке, в каком они перечислены на рис. 2. Например, «контактно-реактивная капиллярная диффузионная печная пайка в вакууме под давлением».



Поделиться с друзьями:

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.059 с.