В. Общестроительные и специальные машины. Классификация машин — КиберПедия 

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

В. Общестроительные и специальные машины. Классификация машин

2018-01-14 679
В. Общестроительные и специальные машины. Классификация машин 3.00 из 5.00 6 оценок
Заказать работу

Машины для производства земляных работ.

Принцип работы Под машинами для производства земляных работ здесь подразумеваются машины для разработки и засыпки подводных траншей.

Подводные траншеи разрабатываются земснарядами, скреперными установками, экскаваторами, подводными трубозаглубителями и другими механизмами.

Выбор применяемого оборудования определяется характером водной преграды: типом разрабатываемого грунта, глубиной и шириной водоема, параметрами подводной траншеи, гидрологическим режимом водной преграды и т. д. Земснаряды используются обычно для разработки подводных траншей при сооружении переходов трубопроводов через судоходные реки.

Для разработки траншей при строительстве переходов ч\з несудоходные реки часто применяются канатно-скреперные установки, а также более производительные скреперно-землесосные установки.

Разработка подводных траншей по дну малых рек часто выполняется спаренными одноковшовыми экскаваторами, оснащенными рабочим оборудованием драглайн 1 пли независимыми экскаваторами с предварительным сужением русла реки с обоих берегов при помощи бульдозера путем перемещения в русло земляных насыпей и последующим размещением на них экскаваторов- В последнем случае расстояние между насыпями должно быть таким, чтобы ковш драглайна заходил с каждой стороны на 1,5—2 м за середину оставшейся ширины русла.

В. Машины циклического действия для разработки траншей и котлов. Определение усилий копания. Определение производительности

Землеройные машины циклического действия это одноковшовые экскаваторы, которые производят разработку грунта с погрузкой его в транспортные средства или навымет (выгрузку в отвал). Одноковшовые строительные экскаваторы являются наиболее распространенным видом землеройных машин. Они служат для разработки грунта и перемещения его в отвал или дЛя погрузки в транспортные средства. Разрабатывают они грунты I-IV групп и разрыхленные мерзлые или скальные грунты. Кроме того, экскаваторы применяют на сваебойных, погрузочно-разгрузочных, монтажных и других работах, используя различные виды сменного рабочего оборудования. По назначению одноковшовые экскаваторы подразделяют на универсальные и специальные.

Различают производительность теоретическую (конструктивную), техническую и эксплуатационную.

Теоретическая производительность, м3/ч, определяется по формуле: П = q · n, где q - геометрическая вместимость ковша; n - конструктивно возможное (расчеrnое) число рабочих циклов в час. Техническая производительность, м3/ч, определяется по формуле: П =q·n ·Кг, где n - наибольшее возможное число циклов в минуту при данных условиях работы; Кг - коэффициент влияния фунта, Кг= Kн ·Kp,где Кн - коэффициент наполнения; Кр - коэффициент разрыхления.  Эксплуатационная производительность в отличие от технической учитывается при использовании экскаватора в зависимости от времени и квалификации машиниста: П=Пт·Кв·Км, где Кв - коэффициент, зависящий от использование экскаватора по времени; Км - коэффициент, зависящий от квалификации машиниста.

 

В. машины для бестраншейной прокладки трубопроводов под дорогами

Принята следующая классификация методов бестраншейной прокладки трубопроводов: прокол; продавливание; проталкива­ние; бурение.

При про­коле грунт разрушается непосредственно конусным наконечни­ком, которым снабжена в этом случае труба-кожух. При продавливании грунт поступает в трубу и разру­шается ручным или механизированным способом уже внутри нее, а в остальных случаях проходки — перед забойным концом трубы-кожуха. Машины для бестраншейной прокладки труб методами прокола Процесс прокола характеризуется вдавливанием в грунт ме­таллической трубы, снабженной на забойном конце конусным наконечником. Наконечник смещает грунт в радиальном направ­лении, образуя вокруг передвигающейся трубы уплотненную зону, радиус которой зависит от свойств грунта и диаметра наконеч­ника.

В зависимости от характера приложения внешней напорной силы различают следующие методы прокола: статический, вибрацион­ный, виброударный.

В. Сваебойные машины

Существующие сваебойные молоты подразделяются по роду привода на механические или подвесные, пневманические, дизельные и электрические (вибромолоты).

По принципу использования энергии привода различают молоты простого и двойного действия. В молотах простого действия энергия привода необходима только для подъема ударной части, а падение ее совершается под действием собственного веса. В молотах двойного действия энергия привода идет и на движение ударной части вниз, увеличивая ее скорость и, следовательно, силу удара. К молотам простого действия относятся механические, дизельные и паровоздушные одиночного действия; к молотам двойного действия — паровоздушные двойного действия.

Главным определяющим параметром молотов простого действия является вес ударной части, молотов двойного действия и вибромолотов — энергия удара.

Механические или подвесные молоты являются простейшим типом сваебойных молотов. Молот представляет собой чугунную или стальную болванку, имеющую вверху петлю для сцепления с подъемным канатом и направляющие захваты для удержания и направления молота в стрелах копра. Принцип действия молота заключается в попеременном подъеме его с помощью лебедки на некоторую высоту и свободном падении на голову сваи.

В паровоздушных молотах в качестве источника энергии используется пар или сжатый воздух с давлением 0,7—0,8 МПа.

Паровоздушный молот простого действия с ручным управлением. В молотах простого действия пар или сжатый воздух только поднимает на некоторую высоту (1,5—2 м) ударную часть молота, т. е. цилиндр, затем происходит выхлоп пара или воздуха и цилиндр падает под действием собственного веса, нанося удар по свае.

В молотах простого действия с полуавтоматическим управлением в отличие от молотов с ручным управлением выхлоп пара или сжатого воздуха благодаря специальному устройству происходит автоматически. Управление впуском пара (сжатого воздуха) в цилиндр молота после выхлопа и удара цилиндра по свае остается ручным. В большинстве конструкций у паровоздушных молотов двойного действия ударной частью является поршень.

Молоты двойного действия весьма эффективны при забивке элементов с малым лобовым сопротивлением, каковыми являются деревянный и стальной шпунт, балки, железобетонные трубчатые сваи с открытым концом, металлические трубы.

Большим преимуществом молотов двойного действия является их способность забивать сваи под водой. Для этого молот снабжается шлангом для выхлопа отработанного воздуха, один конец которого крепится к выхлопному отверстию молота, а другой—выводится выше уровня воды.

Дизель-молот работает по принципу двухтактного двигателя внутреннего сгорания. Источником энергии служит маловязкое дизельное топливо.

Выпускаются дизель-молоты двух типов — трубчатые и штанговые.

Вибромолоты относятся к молотам ударно-вибрационного действия, в которых вертикально направленные колебания, создаваемые вибровозбудителем и передаваемые погружаемой свае, сочетаются с периодическими ударами по ней. Известны конструкции, в которых в качестве привода вибровозбудителя используются электродвигатели и двигатели внутреннего ТРН2601 сгорания. Однако преимущественное распространение получили вибромолоты с электроприводом. Вибромолоты применяются главным образом на забивке металлического шпунта, стальных труб и в отдельных случаях железобетонных свай в слабые грунты.

 

Башенные краны

Башенным краном называют поворотный кран со стрелой, за­крепленной в верхней части вертикально расположенной башни. Вследствие Г-образной компоновки кран этого типа полностью охватывает строящееся здание, обеспечивая подачу материалов и оборудования в любую его точку.

Рис. 3. Общий вид башенного крана:

1 — ходовая тележка; 2 — поворотная платформа; 3 — башня; 4 — стрела; 5 — противовес

Стреловые самоходные краны

Стреловые самоходные краны представляют собой стреловое крановое оборудование (чаще всего полноповоротного типа), смонтированное на самоходном гусеничном или пневмоколесном ходу.

По типу ходового оборудования краны классифицируют на гусеничные и пневмоколесные.

Управление крановыми механизмами осуществляется из ка­бины машиниста, расположенной на поворотной платформе, а их привод — от двигателя автомобиля. Все большее распространение получают автокраны с много­моторным приводом крановых механизмов. Им свойственны сле­дующие преимущества: способность совмещать любые рабочие операции, обеспечение малых скоростей посадки груза, простота и легкость управления краном.

В качестве приводных индивидуальных двигателей применя­ются электро - и гидродвигатели.

Монтажные захваты

При погрузке и разгрузке, а также при выполнении монтажных работ, предшествующих сварке трубопровода в «нитку»; трубы и плети поднимают с помощью полуавтоматических и автоматических клещевых захватов.

Полуавтоматический клещевой захват (рис. 4.14) состоит из следующих основных деталей: корпуса 8 с приваренными к нему двумя крюками 6, двух рычагов 5, 7 с лапами, двух звеньев 4, кольца 2 с приваренными к нему ручкой 1 и штырей 3. Рычаги с корпусом соединены шарнирно при помощи осей 9 таким образом, что центр тяжести каждого рычага сдвинут относительно соответствующей оси к центру захвата. Вследствие этого, если мы наденем кольцо на крюк трубоукладчика и начнем поднимать захват, поставленный корпусом на трубу, то рычаги начнут поворачиваться вокруг своих осей и сближать лапы, прочно охватывая и поднимая трубу. Если же мы опустим трубу на землю и будем продолжать опускать крюк, то рычаги лягут на корпус захвата, разведя лапы и опустив трубу. При новом подъеме они снова охватывают трубу и начнут ее поднимать. Чтобы этого не произошло, рабочий, взявшись рукой за рукоятку кольца 2 при лежащих на корпусе рычагах, должен повернуть кольцо, заведя штыри 3 в зев крюков, расположенных в центральной части корпуса. В этом случае подъем захвата будет производиться при воздействии кольца не на рычаги, а непосредственно на корпус. Захват будет поднят в открытом положении и установлен сверху на следующую трубу. Рабочий, снова взявшись за рукоятку, повернет кольцо и выведет штыри из-под крюков корпуса. Теперь при подъеме рычаги охватят лапами трубу и поднимут ее. Таким образом, открытие и закрытие захвата производятся автоматически, а фиксация открытого положения осуществляется вручную рабочим путем поворота кольца, поэтому кольцевой захват этого типа называется полуавтоматическим.

 

В. МАШИНЫ ДЛЯ ГНУТЬЯ ТРУБ

Трубогибочные станки предназначены для изготовления криво­линейных вставок (колен) из стальных тонкостенных труб мето­дом холодного гнутья (гнутья без нагрева). Станки могут рабо­тать как на трубосварочной базе (централизованное изготовле­ние колен), так и непосредственно на трассе у мест монтажа трубопровода (изготовление колен по месту). Для транспорти­ровки по трассе станки некоторых модификаций снабжены колес­ным или гусеничным ходом. Конструктивная схема всех станков, применяемых при строи­тельстве магистральных трубопроводов, одинакова (рис. 4.18).

Последовательность операций при гнутье труб изображена на рис. 4.19. Подготовленную для гнутья трубу 4 или плеть уклады­вают на упорный и гибочный ложементы при помощи трубоуклад­чика. Подняв упорный ложемент 2 в рабочее положение первого гибочного цикла и закрепив его (рис. 4.19, а), поднимают гибоч­ный ложемент 3, обкатывая его вместе с трубой (плетью) вокруг формующего лекала 1 (рис. 4.19,6). По окончании первого гиба опускают гибочный и упорный ложементы в исходное положение. Труба при этом несколько уменьшает свою кривизну за счет вос­становления упругой деформации. Затем трубу перемещают в сто­рону упорного ложемента, выводя ее изогнутый участок за пре­делы рабочей зоны формующего лекала, и, подняв и закрепив упорный ложемент в рабочем положении второго гибочного цикла (рис. 4.19,8), производят второй гиб (рис. 4.19,г). Циклы повто­ряются (рис. 4.19,д) до получения необходимого угла изгиба трубы. При этом рабочее положение упорного ложемента изменя­ется в течение трех первых гибочных циклов, оставаясь в даль­нейшем постоянным. По окончании гнутья трубу снимают со станка с помощью трубоукладчика.

Гнутье тонкостенных труб осложняется возможностью потери местной устойчивости формы их стенок в зоне сжатия с образо­ванием гофр и вмятин. Для ликвидации этого отрицательного эф­фекта применяют гидравлические или пневматические разжимные элементы - дорны, вводимые внутрь трубы на участке ее формо­вания.

Дорн представляет собой приспособление, предназ­наченное для увеличения устойчивости стенок трубы 1 при гнутье

Наполнительные агрегаты

Наполнительный агрегат состоит из двигателя, муфты сцепле­ния и центробежного насоса. Между муфтой сцепления и цент­робежным насосом при необходимости устанавливается редуктор или коробка передач.

Опрессовочные агрегаты

Основным отличием опрессовочного агрегата от наполнитель­ного является установка на нем насоса поршневого (плунжерного) типа вместо насоса центробежного типа.. Рассмотрим конструкцию широко применяемого насоса 9Т. Это двухпоршневой горизонтальный насос двойного действия. Его приводная часть размещена в корпусе-станине и включает приводной горизонтальный вал с глобоидным червяком, который находится в зацеплении с бронзовым венцом червячного колеса. Оно выпол­нено заодно с коренным двухколенным валом.

 

в. Общестроительные и специальные машины. Классификация машин

Машиной называется механическое орудие производства, представляющее собой сочетание механизмов, осуществляющих определенные целесообразные движения для преобразования энергии полезной работы.

Машины можно разделить на следующие два класса:

1) машины-двигатели, преобразующие различные виды механическую;

2) рабочие машины, получающие необходимую им механическую энергию от двигателя приводящего в движение исполнительный орган машины, при помощи которого машина изменяет состояние, форму или положение обрабатываемого сырья, материала или предмета.

ОБЩАЯ КЛАССИФИКАЦИЯ МАШИН:

Все машины и механизмы, применяемые на строительстве маги­стральных трубопроводов, можно разделить на общестрои­тельные и специальные.

Общестроительные машины имеют широкое применение и могут быть использованы на строительстве любого объекта (например, бульдозер). Специальные машины предназначены в основном для строительства магистральных трубопроводов (например, роторный траншейный экскаватор).

По своему назначению все эти машины могут быть объединены и следующие основные группы:

1) машины для производства земляных работ: бульдозеры, экс­каваторы, траншеезасыпатели, буровые установки и т. д.;

2) труботранспортные и транспортные машины: трубовозы, плетевозы, болотоснегоходы

3) монтажные машины: трубоукладчики, трубогибочные уста­новки, такелажные риспособления

4) машины и оборудование для сварки трубопроводов: установки для дуговой, контактной и других видов сварки;

5) машины для выполнения подводно-технических работ: зем­снаряды, лебедки для протаскивания дюкера и т.д.;

6) машины для очистки и изоляции трубопроводов: установки для приготовления битумной мастики и ее транспортировки, очист­ные и изоляционные машины и т. д.;

7) машины для испытания трубопроводов: наполнительные и опрессовочные агрегаты.

Все эти машины могут быть также классифицированы: по характеру рабочего процесса:

1) машины периодического (циклического) действия;

2) машины непрерывного действия;

по применяемому типу двигателя:

1) машины с двигателем внутреннего сгорания;

2) машины с электрическим двигателем;

3) машины с пневматическим двигателем;

4) машины с гидравлическим двигателем;

5) машины с комбинацией двигателей различных типов;

по степени мобильности:

1) машины, которые не могут быть перемещены с места на место без демонтажа;

2) машины, которые могут перевозиться в кузовах автомобилей, прицепах или на буксире без демонтажа;

3) самоходные машины.

 

 

2в.Основными требования предъявляемые к машинам и оборудованию

Конструктивные требования заключаются в том, что машина должна быть высокопроизводительной, надежной, долговечной, удобной в управлении, обладать хорошей маневренностью и быть приспособленной к изменению в определенных пределах условий работы. Кроме того, машина должна быть достаточно простой в об­служивании и ремонте. Ее монтаж и демонтаж, а также замена дета­лей не должны вызывать затруднений. В конструкции машины должны быть максимально использованы унифицированные узлы, нормали­зованные и стандартные детали, что значительно снижает стоимость машины, повышает ее надежность и облегчает ремонт машины.

Машина должна быть транспортабельной. Ее переброска с объекта на объект не должна вызывать поломки деталей ходовой части машины. При транспортировке на железнодорожной платформе машина должна вписываться в железнодорожный габарит. При транспорти­ровке своим ходом, на буксире или в погруженном состоянии на трейлере машина должна свободно проходить под мостами, линиями электропередач и другими сооружениями. Конструкция машины должна быть рациональна. Требование рациональности относится к каждой ее детали. Машина должна быть по возможности проста (что нельзя смешивать с примитив­ностью). Минимально возможной металлоемкости. Конструкция машины должна быть выполнена также таким обра­зом, чтобы при ее изготовлении и сборке можно было применять прогрессивную технологию.

Эксплуатационные требования. Качество работ должно быть высоким. Машина должна быть дешева, более производительна, чем предшествующие модели, расходовать меньше энергии на единицу объема выработанной продукции.

Машины, предназначенные для работы в районах с холодным кли­матом, должны сохранять работоспособность в условиях низких температур до —60° С, при повышенной скорости ветра, снежных заносах, обледенении и полярной ночи. С этой целью в конструкции таких машин должны быть использованы соответствующие марки стали с соответствующей термообработкой, обеспечивающие высокие показатели ударной вязкости при низких температурах.

Сварные соединения должны выполняться конструктивно и тех­нологически с учетом предотвращения их хрупких разрушений.

Электротехническое и другое оборудование этих машин должно иметь морозо- и влагостойкое исполнение.

В гидравлических системах, а также системах жидкостного охлаждения должны применяться соответствующие низкотемпера­турные рабочие и охлаждающие жидкости.Конструкция ходовой части должна обеспечить эксплуатацию машин на скальных и мерзлых грунтах, обледенелых и заснеженных дорогах, а также заболоченных участках.

При создании новой машины большое внимание должно уделяться обеспечению условий, благоприятных для работы водителя машины.

К этим требованиям относятся:

1) наличие удобного сидения, хорошего обзора и освещения фронта работ и рабочего органа;

2) удобство пользования рычагами, кнопками и педалями управ­ления;

3) устранение вибрации и шума в зоне рабочего места;

4) надежная защищенность рабочего места от пыли и отработан­ных газов;

5) поддержание благоприятного температурного режима в кабине водителя путем искусственного нагрева или охлаждения воздуха.

 

 

3в. Понятие о произв-ти машин. Опред. расчетнотеоретической и экспл-й произв-ти машин

Представляет собой производительность, определяемую расчетными параметрами машины без учета простоев. Расчетные параметры определяются работой на расчетных скоростях рабочих движений, при расчетном значении нагрузок на рабочем органе и с условным материалом. Величина этой производительности постоянна для данной машины и изменяется лишь с изменением ее конструкции (кинематики). Единица производительности землеройных машин может быть также выражена в лилейных единицах (линейная производительность) м/ч и км/ч (например, длина отрытой или засыпанной траншеи).

Расчетно-теоретическая производительность не отражает истинных условий работы машины, ее надежности и долговечности. Она используется только для предварительного сопоставления данных вновь разрабатываемых машин с данными уже существующих.

Техническая производительность — это максимально возможная производительность в данных конкретных условиях. Она определяется по объему выполненных работ в течение часа непрерывной работы машины при максимальном использовании мощности двигателя и передовой технологии. Техническая производительность может быть определена и расчетным путем: умножением расчетной производительности Пр на соответствующий коэффициент, определенный практикой и учитывающий влияние различных факторов. Такими факторами являются степень заполнения ковша и разрыхление грунта, снижение мощности двигателя и т. д.;

Эксплуатационная производительность представляет собой фактическую производительность машины с учетом всех перерывов в работе: случайных и запланированных. Она учитывает использование машины по времени е течение смены и равняется произведению технической производительности на коэф. использ-ия машины во времени.

Эксплуатационная производительность за смену называется сменной производительностью. Это основной показатель, применяемый в технико-экономических расчетах.

Важным технико-эксплуатационным качеством машины является ее маневренность. Под этим термином понимается способность машины разворачиваться вытесненных условиях на минимальной площади. Одним из показателей маневренности является ширина полосы движения машины.

Ширина полосы движения машины характеризует возможность ее перемещения по узким извилистым дорогам или возможность Движения по дорогам с интенсивным движением.

Под шириной полосы движении понимается полоса местности, в которую вписывается машина при повороте. Она зависит от расположения колес машины, ее длины и ширины.

 


Поделиться с друзьями:

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.056 с.