Методика расчета показателей надежности невосстанавливаемых систем — КиберПедия 

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Методика расчета показателей надежности невосстанавливаемых систем

2018-01-14 404
Методика расчета показателей надежности невосстанавливаемых систем 0.00 из 5.00 0 оценок
Заказать работу

Обязательным условием выполнения расчетов ПН для невосстанавливаемых систем является получение ФАЛ в так называемой бесповторной форме.

Как видно из приведенного примера, процедуры составления исходных ФАЛ и их приведение при необ­ходимости в бесповторную форму для многокомпонен­тных систем могут оказаться весьма громоздкими и трудоемкими. Эти трудности возрастают при сетевых структурах систем, так как требуются специальные способы преобразования исходных повторных ФАЛ в бесповторные, то есть такие, в которых каждая логическая переменная присутствовала бы в прямом или инверсном виде лишь один раз. Наиболее полно методы преоб­разования сетевых НФС, приводящих к повторным ФАЛ, в эквивалентные им последовательно-параллельные. Для выполнения этого контрольного задания достаточно изучить способ преобразования структуры типа "треугольник" в эквивалентную ей по характерис­тикам надежности структуру типа "звезда" и способ (алгоритм) разрезания (разложения исходной структуры по ключевым элементам).

Рекомендованные способы преобразования НФС примерно равноценны лишь при условии разложения по одному ключевому элементу. Если таких элементов в исходной структуре несколько, проще использовать метод преобразования "треугольник-звезда". Однако в отличие oт алгоритма разрезания он может быть применен только тогда, когда в НФС имеются замкнутые контуры типа "треугольник".

Перед тем, как рассмотреть способы получения бесповторных ФАЛ, сформулируем правила перехода от логической функции к вероятностной:

1) символ функции работоспособности в левой части ФАЛ заменяется на символ вероятностного ПН системы;

2) символы каждой логической переменной заменяются на вероятностный ПН соответствующего элемента системы, причем

, а (3.3)

3) конъюнкция из логических переменных переводится в произведение М вероятностных ПН соответствующих элементов системы:

, (3.4)

4) дизъюнкция из М логических переменных переводится в выражение следующего вида:

(3.5)

где ; ; ; ;

m - полный набор номеров элементов НФС;

- число сочетаний из M членов по N.

Перейдем к рассмотрению эквивалентных преобразований повторных ФАЛ в бесповторные.

3.3 Преобразование структуры типа «треугольник» в структуру типа «звезда»

Сущность этого приема поясняется с помощью рис. 3.2. Исходя из основного критерия эквивалентного преоб­разования равенства ПН цепей «треугольника» и «звезды» между одинаковыми точками и учитывая правила перехода от ФАЛ к ВФ (3.3) - (3.5), можно для структуры, показанной на рис. 3.2, составить систему уравнений:

(3.6)

 

 

Рис. 3.2 – Пример НФС

 

В результате решения системы уравнений (3.6) определяются значения ПН элементов эквивалентной «звезды» . В частном случае, когда все элементы равнонадежны:

.

Если в исходной НФС может быть выделено несколько звеньев типа «треугольник», преобразование делают одновременно для всех звеньев.

Для упрощения расчетов значений и без существенной потери точности рекомендуется следующий прием. В системе уравнений (3.6) ПН p записываются через вероятности отказов . Если в полученной новой системе уравнений пренебречь произведениями вида , , и , то получим соотношения:

; ; . (3.7)

Еще раз обратившись к рис. 3.2, определим простое правило составления уравнений (3.7): выражение запи­сывается обязательно для вероятностей отказа, причем этот показатель для элемента «звезды», присоединяемого к какой-либо вершине «треугольника», равен произведению показателей элементов «треугольника», прилегающих к этой же вершине. Для дальнейших расчетов делается об­ратный перевод показателей в показатели , например,

.

 

Алгоритм разрезания

Этот прием преобразования отличается от предыдущего универсальностью, то есть он может быть использован для любых типов структур. Однако он отли­чается большей трудоемкостью процедур, что определяет условие целесообразности его применения в тех случаях, когда преобразование «треугольник» — «звезда» не подхо­дит. Метод основан на использовании формулы полной вероятности. Сущность приема заключается в следующем.

В исходной НФС выбирают так называемый ключе­вой элемент с наибольшим числом связей с другими элементами структуры. После этого из исходной НФС получают две производные структуры: в первой этот элемент идеально надежен, во второй он всегда нера­ботоспособен (отсутствует). Производные структуры могут быть представлены в виде схем или алгебраических выражений. При геометрической интерпретации в первой схеме вместо ключевого элемента ставится перемычка, во второй - делается разрыв. При алгебраической записи производных НФС их представляют в виде двух ФАЛ. Первую получают подстановкой в исходную ФАЛ вместо логической переменной ключевого элемента логическую единицу, вторую - подстановкой логического нуля. Первая производная ФАЛ умножается на истинное значение логической переменной ключевого элемента, вторая - на ее ложное значение (инверсию), после чего они ариф­метически суммируются. Если после первого шага разрезания производная НФС не превратится в параллельно-последовательную структуру, в каждой из них независимо друг от друга выбирают по указанному критерию следующий ключевой элемент и так до тех пор, пока преобразуемые структуры не примут параллельно-последовательный вид.

Обращаем внимание на то, что в отличие от метода «треугольник – звезда» разложение по ключевым элементам должно выполняться итеративно. Одновре­менный выбор сразу нескольких ключевых элементов недопустим.

Если необходимо выбрать несколько ключевых эле­ментов, то алгебраическая форма разложения более целесообразна, так как уменьшает трудоемкость проце­дуры преобразований.

Примеры решения задач

Пример 1. Рассчитать вероятность безотказной работы системы, НФС которой представлена на рис. 3.3.

 

Рис. 3.3

Решение: В исходной НФС можно выделить две структуры типа «треугольник»: и , преобразование делают одновременно для обеих структур, как это показано на рис.3.4. При помощи формул (3.7), рассчитаем показатели надежности элементов преобразованной схемы:

Полученная схема является последовательно – параллельной структурой, поэтому вероятность безотказной работы можно рассчитать при помощи классического метода:

.

Рис. 3.4

 

Пример 2. Осуществить переход от ФАЛ к ВФ. Пусть исходная бесповторная ФАЛ имеет вид:

.

Решение: ВБР системы запишется следующим образом:

 

Пример 3. Определить вероятность безотказной работы невосстанавливаемой системы, НФС которой изображена на рис. 3.1.

Решение: ФАЛ, записанная через СДНФ по формуле (3.1), будет иметь вид:

.

Эта ФАЛ не является бесповторной. В ней элементами с наибольшим числом связей являются и . Выбираем в качестве ключевого элемент . Тогда в соответствии с указанными выше правилами можно записать:

.

Первая производная ФАЛ еще не стала беспо­вторной, вторая — бесповторная. Следует учитывать, что эти ФАЛ между собой независимы, поэтому наличие в них некоторых одинаковых логических переменных не имеет значения. Выбираем на втором шаге итерации в первой ФАЛ в качестве следующего ключевого элемента как наиболее часто повторяющийся. Получим функцию следу­ющего вида:

.

На третьем шаге в выражении при в качестве ключевого формально может быть выбран любой из повто­ряющихся элементов, поскольку они встречаются одинаково часто, но целесообразно выбрать x7 так как его исключение уберет диагональную связь и, следовательно, быстрее приведет структуру к параллельно-последова­тельному виду.

.

Обращаем внимание на то, что выражение при было приведено к бесповторной форме способом скле­ивания вместо выбора очередного ключевого элемента, что, безусловно, менее трудоемко. Поэтому всегда надо иметь в виду, что перед выбором или в ходе выбора ключевых элементов целесообразно пробовать применять минимизацию булевых выражений путем склеивания. Это во многих случаях позволяет уменьшить число итераций преобразования.

Полученное для выражение переводим по формулам (3.3) - (3.5) в вероятностную функцию:

.

Для расчетов с помощью ЛВМ средней наработки до отказа необходимо пользоваться формулой: , предварительно составив ВФ для функции ВБР невосстанавливаемой системы через функции ВБР элементов при известном законе распре­деления времени их работы до отказа.

Пример 4. Пусть ВФ имеет вид .

Требуется определить системы, если время безотказной работы элементов подчиняется экспоненци­альному распределению, а .

Решение:

; .

Пример 5. Невосстанавливаемая система описывается НФС, представленной на рис. 3.5. Элементы системы характеризуются ПН:

; .

Рис. 3.5

 

Необходимо рассчитать для оперативного времени ПН системы: и .

Решение: По заданной НФС составляется функция работоспособности в виде исходной ФАЛ. При заданной структуре более целесообразна запись ФАЛ через СДНФ:

.

В исходной ФАЛ нет контуров типа «треугольник», поэтому после предварительного группирования некоторых переменных применяем алгоритм разрезания. В качестве первого ключевого элемента наиболее целесо­образно выбрать элемент , имеющий наибольшее число связей с элементами.

.

После первого шага разложения получилась бесповторная ФАЛ. По формулам (3.3) – (3.5) выполняем переход от ФАЛ к ВФ:

; ;

.

Запишем выражение для в виде временной функции:

;

.

Интенсивность отказов системы за 720 ч:

.

.

 


Поделиться с друзьями:

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.051 с.