Разгон пуль методами «смыкающихся ножниц» и «векторного сложения скоростей» — КиберПедия 

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Разгон пуль методами «смыкающихся ножниц» и «векторного сложения скоростей»

2018-01-14 331
Разгон пуль методами «смыкающихся ножниц» и «векторного сложения скоростей» 0.00 из 5.00 0 оценок
Заказать работу

Кому-то может показаться что автор первооткрыватель новых технологий, кому-то наоборот, может показаться что он фантазер. Не надо эмоций, пока я ничего нового не придумал. Эти технологии уже используются в реально существующих артиллерийских системах, основанных на принципах кумулятивного взрыва. Только слова там используются слишком мудреные, а как известно: «как корабль назовешь, так он и… полетит».

Кумулятивный эффект был случайно открыт в 30 годах прошлого века и сразу нашел применение в артиллерии. Кумулятивный заряд для разгона струи газов использует сразу два упомянутых выше эффекта,- эффект векторного сложения скоростей и эффект смыкающихся ножниц. В более продвинутых реализациях в кумулятивную струю помещают металлический сердечник, который этой струей разгоняется до скорости самой струи, так называемый «ударное ядро».

Но эта технология имеет физический предел, скорость детонации – 10км/сек (предельное) и угол раскрытия кумулятивного конуса – 1:10 (физический предел прочности). В результате получаем скорость истечения газов на уровне 100-200 км/сек. Теоретически.

Это очень не эффективный процесс, большая часть энергии тратится впустую. Кроме этого есть проблема с нацеливанием, которое зависит от равномерности подрыва кумулятивного заряда и его однородности.

Тем не менее технология уже вышла из лабораторий и применяется в штатных вооружениях с середины восьмидесятых годов прошлого века, это известная противотанковая «мина» ТМ-83 с зоной поражения более 50 метров. А вот последний, и причем отечественный пример:

Это противовертолетная «мина», дальность «плевка» кумулятивного заряда до 180 метров, поражающий элемент выглядит приблизительно так:

Это фото ударного ядра в полете, сразу за вылетом его из газовой кумулятивной струи (черное облако справа), на поверхности виден след ударной волны (конус Маха).

Давайте назовем все своими именами, ударное ядро,- это Высокоскоростная пуля, только разогнанная не в стволе, а в струе газов. А сам кумулятивный заряд это Бесствольная артиллерийская установка, именно это нам и надо для реконструкции оружия с перевала.

Скорость такой пули 3км/сек, она очень далека от теоретического предела технологии в 200км/сек. Объясню почему,- теоретический предел скорости достигается в ходе научных экспериментов в лабораторных условиях, там достаточно в ходе экспериментов получить хотя бы один рекордный результат. А в реальных вооружениях техника должна срабатывать со сто процентной гарантией.

Метод разгона объекта кумулятивной струей при маленьких углах смыкания взрывного конуса (25-45градусов) не дает точного прицеливания и часто ударное ядро просто выскальзывает из фокуса газовой струи, уходя, что называется в «молоко».

Для боевого применения кумулятивную выемку делают с углом смыкания больше 100 градусов, при таких углах кумулятивной выемки скорость более 5км/сек достичь невозможно даже в теории, но зато технология работает надежно и применима в боевых условиях.

Можно ускорить процесс «смыкания ножниц», но в этом случае следует отказаться от метода детонации для формирования точки приложения сил во взрывном канале. Для этого нужно чтобы взрыв проходил по трассе разгона пули с большей скоростью нежели может обеспечить механизм детонации.

Схема подрыва в таком случае должна обеспечивать одновременный подрыв ВВ по всей длине взрывного канала, а эффект ножниц получать за счет конусного расположения стенок взрывного канала, как это представлено на рисунке:

Создание схемы одновременного подрыва взрывчатого вещества в канале разгона пули вполне посильная задача для современного технологического уровня.

И кроме того будет сразу решен вопрос физической прочности, трубка из детонирующего вещества не успеет разрушиться за время пролета пули, поскольку механическая нагрузка будет передаваться медленнее чем пойдет взрывной процесс.

Для пули важна именно точка приложения силы, единственная проблема, это контроль за скоростью перемещения точки приложения силы, таким образом, чтобы пуля была всегда в этой точке, но об этом позже, это уже техника а не теория.

Осталось разобраться с масштабированием процесса разгона такой пули, а именно в каких массо-габаритных параметрах реализовать этот теоретический механизм на практике.

Закон масштабирования RTT

Мы живет в стойких заблуждениях, примером такого заблуждения является ассоциативная связка понятий: «больше,- значит мощнее». Артиллерийская науки очень консервативна и полностью подчиняется пока этому принципу, но ничто не вечно под луной.

До недавнего времени эта ассоциативная парадигма была во многом правильной, и менее затратной с точки зрения практической реализации. Но сейчас это уже не так, прорывы технологий осуществляются там, где принципы меняются на прямо противоположные.

Приведу пример из своей профессии, вычислительные машины за 20-30 лет уменьшились в объеме в 1000 раз, а вычислительная мощность их поднялась при этом также в тысячу раз.

Я бы этот пример обобщил до глобально масштаба, сформулировав в виде закона, например так: «Увеличение эффективности физического процесса обратно пропорционально объему используемого для реализации данного процесса».

Назову его законом R_T_T, по праву первооткрывателя, вдруг название приживется?

Знаменитым стану!

Шутка конечно, но в каждой шутке есть доля правды, вот и постараемся доказать артиллеристам, что их инженерная наука подчиняется тоже этому закону.

Посчитаем «наших баранов», зная давление газов продуктов сгорания ВВ, массу «микропули», ее эффективную поверхность можно посчитать дистанцию разгона, другими словами длину ствола в котором ускоряется «микропуля» до заданной скорости.

У меня получилось что такую «микропульку» до 1000км/сек можно разогнать на дистанции всего 15 сантиметров.

Наши «ножницы» смыкаются с удвоенной скоростью газов продуктов взрыва - 20км/сек, значит для получения скорости смыкания в 1000км/сек и входного калибра диаметром 1мм для взрывного канала длинной 150мм., выходной калибр должен составлять 1,3мм..

Осталось понять, а сколько ВВ нужно для такого разгона, но тут все просто, физика универсальна и ее законы неизменны, для разгона пули в миллион раз легче и в тысячу раз быстрее нашего эталона,- винтовочной пули потребуется ровно столько же энергии, сколько и для разгона обычной винтовочной пули.

Следовательно, энергия ВВ должна остаться неизменной, но характер ВВ должен быть иной, порох не подходит, слишком медленно горит, нужно детонирующее ВВ. Другими словами нужно из 5 граммов ВВ, типа гексогена сделать трубку длинной 150мм. и входным диаметром 1мм. а выходным 1,3 мм..

Для прочности и концентрации взрыва вовнутрь канала пролета «микропули» нужно поместить эту конструкцию в прочный металлический цилиндр. И умудриться на всей дистанции пролета «микропули» произвести одновременный и равномерный подрыв ВВ.

Подведем итог, физические принципы для разгона пули до скоростей в 1000км/сек имеются даже на основе пороховых технологий, более того эти принципы используются в реальных системах вооружения.

Только не надо сразу кидаться в лаборатории и пытаться реализовать такую взрывную разгонную систему, есть одна существенная проблема, начальная скорость «микропульки» в таком взрывном канале должна быть больше скорости смыкания взрывных фронтов, иначе эффект «смыкающихся ножниц» не сработает.

Другими словами, чтобы инжектировать «микропульку» во взрывной канал ее нужно предварительно разогнать до скорости приблизительно 10км/сек., а это совсем не просто.

Поэтому технические подробности реализации такой гипотетической стрелковой системы оставим для следующей части этой статьи, так что продолжение следует….

  • Военный архив» История

Поделиться с друзьями:

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.01 с.