Нейтральная, кислотная и щелочная среда — КиберПедия 

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Нейтральная, кислотная и щелочная среда

2018-01-14 364
Нейтральная, кислотная и щелочная среда 0.00 из 5.00 0 оценок
Заказать работу

Чистая вода - это очень слабый электролит:

H2O H+ + OH

Концентрации катионов водорода H+ и гидроксид-ионов OH в чистой воде весьма невелики и составляют 1 · 10−7 моль/л при 25 °С. Катион водорода H+представляет собой простейшую химическую частицу - протон p + (электронная оболочка катиона H+ отвечает формуле 1 s 0 и не содержит электронов). У свободного протона велики подвижность и проникающая способность; в окружении полярных молекул воды он не может оставаться свободным и присоединяется к одной из молекул H2O, образуя катион оксония H3O+:

H2O + H+ = H3O+

В дальнейшем для упрощения записываем только H+, но подразумеваем H3O+. В чистой воде содержание H3O+ (H+) и OH одинаково; в водных растворах кислот появляется избыток ионов H3O+ (H+), а в щелочных - избыток ионов OH за счет диссоциации кислот или оснований).

Типы среды водных растворов:

· Нейтральная - c (H+) = c (OH)

· Кислотная - c (H+) > c (OH)

· Щелочная - c (H+) < c (OH)

.

Диссоциация воды

Реакции, применяемые в аналитической химии, протека­ют, как правило, в водных растворах. Вода является одним из наименее диссоциированных веществ. Чистая вода очень плохо проводит электрический ток. Однако вода все же диссоциирует на водородные и гидроксид-ные ионы:

Н20 *=± Н+ + ОН".

При температуре 22 °С в каждом литре воды 1 • 10~7 мо­ля диссоциировано на ионы.

Для каждого слабого электролита мы можем напи­сать выражение константы диссоциации. Для воды оно имеет следующий вид:

[№] [ОН-]

Адисс - [Нг0]

Это выражение можно записать иначе:

AW[H20] =[Н+] [ОН"].

Рассмотрим левую часть этого уравнения. КЛисс — по­стоянная величина при постоянной температуре. Кон­центрацию молекул воды [Н20] мы можем считать практически постоянной, так как вода находится почти исключительно в виде недиосоциированных молекул Н20. Следовательно, вся левая часть полученного уравнения является величиной постоянной. Таким образом:

const = [Н+] [ОН"].

Произведение концентрации ионов Я+ и ОН- в воде и в водных растворах является постоянной величиной при постоянной температуре. Эта величина называется ионным произведением воды и обозначается Kw: Kw = [Н+] [ОН"].

При 22 °С в воде и водных растворах /Сш=Ы0~14. Смысл выражения [Н+] [ОН~] = const заключается в следующем: как бы ни менялись концентрации ионов Н+ и ОН-, их произведение во всяком водном растворе со­храняет постоянное значение, равное ЫО-14 при 22 °С. При повышении температуры величина Kw быстро юоз­пястает

Так, при 30°С Кш= 1,89-10"14, при 80 6С Kw = L34-10Ll4, а при 100 °С Kw = 74-10~14.

Из всего сказанного выше можно сделать ряд выво-

Д°В1. [Н+][ОН-] = 1-10-14, т. е. [Н+][ОН"]^0. Если произведение не равно нулю, то ни один из сомножите­лей не может быть равен нулю; [Н+]#0 и [ОН-]=^0. А это значит, что в воде и водных растворах концентра­ция ионов Н+ и концентрация ионов ОН~ не могут быть равны нулю. Отсюда следует, что в воде и водных рас­творах обязательно присутствуют как ионы Н+, так и ионы ОН~, независимо от среды раствора.

2. Произведение концентраций ионов Н+ и ОН- ве­личина постоянная:

[Н+] [ОН"] = const.

Если изменить один из сомножителей, то обязательно должен измениться и другой, для того, чтобы произведе­ние осталось постоянным. Если, например, к чистой воде добавить столько кислоты, чтобы концентрация ионов водорода увеличилась в 100 раз, то, чтобы произведение [Н+] [ОН"] осталось равным 1 • 10"14, концентрация гид-роксид-ионов должна понизиться в 100 раз.

Следовательно, если увеличить концентрацию ионов Н+, то концентрация ионов ОН- уменьшится во столько же раз, и наоборот.

Водородный показатель (рН) величина, характеризующая актив­ность или концентрацию ионов водорода в растворах. Водородный показатель обозначается рН.
Водородный показатель численно равен отрицательному десятичному логарифму активности или концентрации ионов водорода, выраженной в молях на литр:
pH=-lg[ H+ ]
В воде концентрация ионов водорода определяется электролитической диссоциацией воды по уравнению
H2O=H++OH-
Константа диссоциации при 22° С составляет

Пренебрегая незначительной долей распавшихся молекул, можно концентрацию недиссоциированной части воды принять равной обшей концентрации воды, которая составляет: С[H2O ]=1000/18=55,55моль/л.
Тогда:

C[ H+ ] ·C[ OH- ]=K·C[H2O]=1,8·10-16·55,55=10-14
Для воды и ее растворов произведение концентраций ионов Н+ и ОН- величина постоянная при данной температуре. Она называется ионным произведением воды КВ и при 25° С составляет 10-14.
Постоянство ионного произведения воды дает возможность вычислить концентрацию ионов H+если известна концентрация ионов OH-
и наоборот: .
Понятия кислая, нейтральная и щелочная среда приобретают количественный смысл.
В случае, если [ H+ ] =[ OH- ]эти концентрации (каждая из них) равны моль/л, т.е [ H+ ] =[ OH- ]=10-7моль/л и среда нейтральная, в этих растворах
pH=-lg[ H+ ]=7 и рОН=-lg[ OH-]=7
Если [ H+ ]>10-7моль/л, [ OH-]<10-7моль/л -среда кислая; рН<7.
Если [ H+ ]<10-7 моль/л, [ OH-]>10-7моль/л -среда щелочная; рН>7.
В любом водном растворе рН + рОН =14, где рОН=-lg[ OH-]
Величина рН имеет большое значение для биохимических процес­сов, для различных производственных процессов, при изучении свойств природных вод и возможности их применения и т.д.

Обычно электролитами называют вещества, проводящие в водном растворе электрический ток (многие соли, кислоты, основания), в противоположность неэлектролитам, не проводящим в растворе электрического тока (большинство органических соединений: сахар, спирты, глюкоза и др.).

Для объяснения свойств водных растворов электролитов Аррениус (1887 г.) предложил теорию, сущность которой сводится к следующим основным положениям:

1. Молекулы всех веществ, проводящих в водном растворе электрический ток, при растворении в воде в той или иной степени диссоциируют на ионы. Например:

2. Образующиеся при электролитической диссоциации ионы в отличие от нейтральных атомов и молекул имеют электрический заряд и поэтому обладают совершенно иными свойствами. Так, например, атомарный водород является энергичным восстановителем, в то время как ион водорода обладает окислительными свойствами. Поваренная соль, содержащая ион хлора, употребляется в пищу, тогда как свободный хлор (0,01% и выше) отравляет организм человека.

3. При пропускании электрического тока через раствор электролита положительно заряженные ионы направляются к отрицательному электроду (катоду), отрицательные ионы — к положительному электроду (аноду). Ионы, передвигающиеся к катоду, получили название катионов; ионы, передвигающиеся к аноду — анионов.

Положительно заряженные ионы получают электроны от катода, а отрицательно заряженные ионы отдают свои электроны аноду.

Гидролиз солей – это взаимодействие ионов соли с водой с образованием малодиссоциирующих частиц.

Гидролиз, дословно, - это разложение водой. Давая такое определение реакции гидролиза солей, мы подчеркиваем, что соли в растворе находятся в виде ионов, и что движущей силой реакции является образование малодиссоциирующих частиц (общее правило для многих реакций в растворах).

Всегда ли ионы способны образовывать с водой малодиссоциирующие частицы? Разбирая этот вопрос с учениками, отмечаем, что катионы сильного основания и анионы сильной кислоты таких частиц образовать не могут, следовательно, в реакцию гидролиза не вступают.

Какие типы гидролиза возможны? Поскольку соль состоит из катиона и аниона, то возможно три типа гидролиза:

· гидролиз по катиону (в реакцию с водой вступает только катион);

· гидролиз по аниону (в реакцию с водой вступает только анион);

· совместный гидролиз (в реакцию с водой вступает и катион, и анион);

Гидролиз по катиону приводит к образованию гидроксокатионов и ионов водорода (среда раствора кислая).

Гидролиз по аниону приводит к образованию гидроанионов и гидроксид-ионов (среда раствора щелочная).

Совместный гидролиз. Из самого названия следует, что в этом случае в растворе протекают две выше рассмотренные реакции. Предлагаем школьникам проанализировать их и сделать вывод о реакции среды. Опровергаем (можно экспериментом) представление о том, что среда будет нейтральной. Одинаковое число ионов водорода и гидроксид-ионов только на бумаге. На самом деле здесь протекают две независимые обратимые реакции, и каких ионов в растворе окажется больше, зависит от степени протекания каждой реакции. А это, в свою очередь, зависит от того, что слабее, кислота или основание. Если слабее основание, то в большей степени будет протекать гидролиз по катиону и среда раствора будет кислой. Если слабее основание – наоборот. Как исключение, возможен случай, когда среда будет почти нейтральной, но это только исключение.

Одновременно обращаем внимание учащихся на то, что связывание гидроксид-ионов и ионов водорода в воду приводит к уменьшению их концентрации в растворе. Предлагаем вспомнить принцип Ле Шателье и подумать, как это повлияет на равновесие. Подводим их к выводу, что при совместном гидролизе степень его протекания будет значительно выше, и, в отдельных случаях, это может привести к полному гидролизу.

Степень гидролиза

Соли, образованные катионом сильного основания и анионом слабой кислоты. Степень гидролиза. Примером соли, образованной катионом сильного осно­вания и анионом слабой кислоты, может служить ацетат натрия CH3COONa.

 

При растворении этой соли ионы Na+ и СН3СОО- встретятся с ионами Н+ и ОН- воды. В результате ионы Н+ будут соединяться с ионами СН3С0О- и образовывать молекулу слабой, т. е. мало-диссоциированной уксусной кислоты, СНзСООН:

Н+ + СН3СОО~ СН3СООН.

В то же время ионы ОН- воды не будут соединяться с катионами Na+, так как образующееся при этом основа­ние гидроксид натрия NaOH является сильным и диссо­циирует практически нацело.

Образующаяся уксусная кислота, хотя и очень не­значительно, но все же диссоциирует. Диссоциируя, она возвращает в раствор часть ионов Н+ и СН3СОО-. Таким образом, возникает обратная реакция и в конце концов устанавливается равновесие.

Na+ + СН3СОСГ + Н20 4=fc Na+ + ОН" + СН3СООН.

Следовательно, реакция между ацетатом натрия и водой является обратимой и проходит неполностью. Такое яв­ление называется неполным гидролизом.

Соли, образованные катионом сильного основания и анионом слабой кислоты, подвергаются неполному гидро­лизу.

По мере связывания ионов Н+ (образование молекул СНзСООН) равновесие диссоциации воды нарушается, вследствие чего все новые и новые ионы Н+ и ОН-будут появляться в растворе. Ионы Н+ связываются с ионами GH3COO", а ионы ОН" постепенно накаплива­ются в растворе. После установления равновесия кон­центрация ионов ОН" будет превышать концентрацию ионов Н+ и поэтому раствор соли ацетата натрия CH3COONa будет иметь щелочную реакцию.

Гидролиз солей — разновидность реакций гидролиза, обусловленного протеканием реакций ионного обмена в растворах (преимущественно, водных) растворимых солей-электролитов. Движущей силой процесса является взаимодействие ионов с водой, приводящее к образованию слабого электролита в ионном или (реже) молекулярном виде («связывание ионов»).

Различают обратимый и необратимый гидролиз солей[1]:

Константа гидролиза — константа равновесия гидролитической реакции. Так константа гидролиза соли равна отношению произведения равновесных концентраций продуктов реакции гидролиза к равновесной концентрации соли с учетом стехиометрических коэффициентов.

В качестве примера ниже приводится вывод уравнения константы гидролиза соли, образованной слабой кислотой и сильным основанием:

Уравнение константы равновесия для данной реакции имеет вид:

или

Так как концентрация молекул воды в растворе постоянна, то произведение двух постоянных можно заменить одной новой — константой гидролиза:

Численное значение константы гидролиза получим, используя ионное произведение воды и константу диссоциации азотистой кислоты :

подставим в уравнение константы гидролиза:

В общем случае для соли, образованной слабой кислотой и сильным основанием:

, где — константа диссоциации слабой кислоты, образующейся при гидролизе

Для соли, образованной сильной кислотой и слабым основанием:

, где — константа диссоциации слабого основания, образующегося при гидролизе

Для соли, образованной слабой кислотой и слабым основанием:

 

1. Гидролиз соли слабой кислоты и сильного основания (гидролиз по аниону):

(раствор имеет слабощелочную среду, реакция протекает обратимо, гидролиз по второй ступени протекает в ничтожной степени)

2. Гидролиз соли сильной кислоты и слабого основания (гидролиз по катиону):

(раствор имеет слабокислую среду, реакция протекает обратимо, гидролиз по второй ступени протекает в ничтожной степени)

· 3. Гидролиз соли слабой кислоты и слабого основания:

(равновесие смещено в сторону продуктов, гидролиз протекает практически полностью, так как оба продукта реакции уходят из зоны реакции в виде осадка или газа).

4. Соль сильной кислоты и сильного основания не подвергается гидролизу, и раствор нейтрален. См. также Электролитическая диссоциация.

 

10 билет

Строение металлов, которое определено современным научным мировоззрением, представляет собой кристаллическую решетку. В ее основе находятся свободные электроны и ионы, обладающие положительным зарядом. Сам кристалл изображается в форме решетки, имеющей пространственную структуру. Узлы данной системы заняты ионами, а между ними находятся электроны, обладающие высокой способностью к движению. Строение атомов металлов позволяет активным частицам постоянно перемещаться. Электроны совершают переходы между атомами, а также вращаются вокруг их ядер. Зная особенности строения атомов металлов, можно легко объяснить возникновение в них электрического тока. Он появляется под воздействием разности потенциалов, когда электроны, не имеющие связей с ионами, начинают упорядоченное движение в одном направлении. Особенности строения атомов металлов обуславливают и высокую тепловую проводимость данных элементов. Электроны, которые совершают непрерывное движение, обмениваются энергией с ионами в момент столкновения с последними. Элементы, находящиеся в узлах кристаллической решетки, передают колебания соседним частицам, те следующим и так далее. Вследствие этого процесса тепловой режим металла уравновешивается. В результате температура всей массы становится одинаковой.- Читайте подробнее на FB.ru: http://fb.ru/article/50513/osobennosti-stroeniya-atomov-metallov

Особенности строения атомов металлов заключаются в существовании между ними связей ковалентного характера. В кристаллической решетке присутствует также сила кулона, которая притягивает электроны и ионы. Это и есть металлическая связь, которая существует между частицами элемента. Данный тип соединения присутствует даже при наличии жидкого состояния вещества. Исходя из этого, можно сделать вывод, что металлической связью обладают не отдельные частицы. Ею владеют их агрегаты.- Читайте подробнее на FB.ru: http://fb.ru/article/50513/osobennosti-stroeniya-atomov-metallov

Металлы в этом перечне находятся в определенной последовательности, которая характеризует убывание их химической способности к активности. Исходя из ряда напряжений, можно определить свойства элемента: - при снижении электродного потенциала металла увеличивается его восстановительная функция; - металлы способны вытеснять из солевых растворов те элементы, которые расположены после них в ряду напряжений; - металлы, располагаемые в перечне активности слева от водорода, могут вытеснять его из кислотных растворов.- Читайте подробнее на FB.ru: http://fb.ru/article/50513/osobennosti-stroeniya-atomov-metallov

Физические свойства
Для металлов наиболее характерны следующие свойства: металлический блеск, твердость, пластичность, ковкость и хорошая проводимость тепла и электричества.

Для всех металлов характерна металлическая кристаллическая решетка: в ее узлах находятся положительно заряженные ионы, а между ними свободно перемещаются электроны. Наличие последних объясняет высокую электропроводность и теплопроводность, а также способность поддаваться механической обработке.

Теплопроводность и электропроводность уменьшается в ряду металлов:
Аg Сu Аu Аl Мg Zn Fе РЬ Hg
Все металлы делятся на две большие группы:
Черные металлы
Имеют темно-серый цвет, большую плотность, высокую температуру плавления и относительно высокую твердость.
Типичным представителем черных металлов является железо.
Цветные металлы
Имеют характерную окраску: красную, желтую, белую; обладают большой пластичностью, малой твердостью, относительно низкой температурой плавления.
Типичным представителем цветных металлов является медь.

В зависимости от своей плотности металлы делятся на:
Легкие (плотность не более 5 г/см)
К легким металлам относятся: литий, натрий, калий, магний, кальций, цезий, алюминий, барий.
Самый легкий металл — литий 1л, плотность 0.534 г/см3.
Тяжелые (плотность больше 5 г/см3).
К тяжелым металлам относятся: цинк, медь, железо, олово, свинец, серебро, золото, ртуть и др.
Самый тяжелый металл — осмий, плотность 22,5 г/см3.

Металлы различаются по своей твердости:
— мягкие: режутся даже ножом (натрий, калий, индий);
— твердые: металлы сравниваются по твердости с алмазом, твердость которого равна 10. Хром — самый твердый металл, режет стекло.

В зависимости от температуры плавления металлы условно делятся на:
1. Легкоплавкие (температура плавления до 1539°С).
К легкоплавким металлам относятся: ртуть — температура плавления —38,9°С; галлий — температура плавления 29,78°С; цезий — температура плавления 28,5°С; и другие металлы.
2. Тугоплавкие (температура плавления выше 1539 С).
К тугоплавким металлам относятся: хром — температура плавления 1890°С; молибден — температура плавления 2620°С; ванадий — температура плавления 1900°С; тантал — температура плавления 3015°С; и многие другие металлы.
Самый тугоплавкий металл вольфрам — температура плавления 3420°С.

Классификация металлов

Каждый металл отличается строением и свойствами от другого, тем не менее, по некоторым признакам их можно объединить в группы.

Данная классификация разработана русским ученым Гуляевым А.П. и может не совпадать с общепринятой.

Все металлы можно разделить на две большие группы - черные и цветные металлы.

Черные металлы чаще всего имеют темно-серый цвет, большую плотность (кроме щелочно-земельных), высокую температуру плавления, относительно высокую твердость. Наиболее типичным металлом этой группы является железо.

Цветные металлы чаще всего имеют характерную окраску: красную, желтую и белую. Обладают большой пластичностью, малой твердостью, относительно низкой температурой плавления. Наиболее типичным элементом этой группы является медь.

Черные металлы в свою очередь можно подразделить следующим образом:

1. Железные металлы - железо, кобальт, никель (так называемые ферромагнетики) и близкий к ним по свойствам марганец. Co, Ni, Mu часто применяют как добавки к сплавам железа, а также в качестве основы для соответствующих сплавов, похожих по своим свойствам на высоколегированные стали.

2. Тугоплавкие металлы, температура плавления которых выше, чем железа (т.е. выше 1539С). Применяют как добавки к легированным сталям, а также в качестве основы для соответствующих сплавов. К ним относят: Ti, V, Cr, Zr, Nb, Mo, Tc (технеций), Hf (гафий), Ta(тантал), W, Re (рений).

3. Урановые металлы - актиниды, имеющие преимущественное применение в сплавах для атомной энергетики. К ним относят: Ас(актиний), Th(торий), U(уран), Np(нептуний), Pu(плутоний), Bk(берклий), Cf (калифорний), Md(менделевий), No(нобелий) и др.

4. Редкоземельные металлы (РЗМ) - La(лантан), Ce(церий), Nd(неодим), Sm(санарий), Eu(европий), Dy(диспрозий), Lu(лютеций), Y(иттрий), Sc(сландий) и др., объединяемые под названием лантаноидов. Эти металлы обладают весьма близкими химическими свойствами, но довольно различными физическими (Тип. и др.). Их применяют как присадки к сплавам других элементов. В природных условиях они встречаются вместе и трудно разделимы на отдельные элементы. Обычно используется смешанный сплав - 40-45% Се (церий) и 40-45% всех других РЗМ.

5. Щелочноземельные металлы - в свободном металлическом состоянии не применяются, за исключением особых случаев, например, теплоносители в атомных реакторах. Li(литий), Na, K(калий), Rb(рубидий), Cs(цезий), Fr(франций), Ca(кальций), Sr(стронций), Ba(барий), Ra(радий).

Цветные металлы подразделяются на:

1. Легкие металлы - Ве(берилий), Mg(магний), Al(аллюминий), обладающие малой плотностью.

2. Благородные металлы - Ag(серебро), Pt(платина), Au(золото), Pd(палладий), Os(осмий), Ir(иридий), и др. Сu - полублагородный металл. Обладают высокой устойчивостью против коррозии.

3. Легкоплавкие металлы - Zn(цинк), Cd(кадмий), Hg(ртуть), Sn(олово), Bi(висмут), Sb(сурьма), Pb(свинец), As(мышьяк), In(индий) и т.д., и элементы с ослабленными металлическими свойствами - Ga(галий), Ge(германий).


Поделиться с друзьями:

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.055 с.