Биологически и анатомические особенности человека, связанные с его происхождением и эволюцией. Законы построения человеческого организма. — КиберПедия 

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Биологически и анатомические особенности человека, связанные с его происхождением и эволюцией. Законы построения человеческого организма.

2018-01-13 171
Биологически и анатомические особенности человека, связанные с его происхождением и эволюцией. Законы построения человеческого организма. 0.00 из 5.00 0 оценок
Заказать работу

Одноосные суставы.

1. Цилиндрический сустав. Цилиндрическая суставная поверхность, ось которой располагается вертикально, параллельно длинной оси сочленяющихся костей или вертикальной оси тела, обеспечивает движение вокруг одной вертикальной оси – вращение, такой сустав называют также вращательным.

 

2. Блоковидный сустав, (пример - межфаланговые сочленения пальцев). Блоковидная суставная поверхность его представляет собой поперечно лежащий цилиндр, длинная ось которого лежит поперечно, во фронтальной плоскости, перпендикулярно длинной оси сочленяющихся костей; поэтому движения в блоковидном суставе совершаются вокруг этой фронтальной оси (сгибание и разгибание). Направляющие бороздка и гребешок, имеющиеся на сочленовных поверхностях, устраняют возможность бокового соскальзывания и способствуют движению вокруг одной оси. Если направляющая бороздка блока располагается не перпендикулярно к оси последнего, а под некоторым углом к ней, то при продолжении ее получается винтообразная линия. Такой блоковидный сустав рассматривают как винтообразный (пример - плечелоктевой сустав). Движение в винтообразном суставе такое же, как и в чисто блоковидном сочленении. Согласно закономерностям расположения связочного аппарата, в цилиндрическом суставе направляющие связки будут располагаться перпендикулярно вертикальной оси вращения, в блоковидном суставе - перпендикулярно фронтальной оси и по бокам ее. Такое расположение связок удерживает кости в их положении, не мешая движению.

Двухосные суставы.

1. Эллипсовидный сустав, (пример - лучезапястный сустав). Сочленовные поверхности представляют отрезки эллипса: одна из них выпуклая, овальной формы с неодинаковой кривизной в двух направлениях, другая соответственно вогнутая. Они обеспечивают движения вокруг 2 горизонтальных осей, перпендикулярных друг другу: вокруг фронтальной - сгибание и разгибание и вокруг сагиттальной - отведение и приведение. Связки в эллипсовидных суставах располагаются перпендикулярно осям вращения, на их концах.
2. Мыщелковый сустав, (пример - коленный сустав). Мыщелковый сустав имеет выпуклую суставную головку в виде выступающего округлого отростка, близкого по форме к эллипсу, называемого мыщелком, отчего и происходит название сустава. Мыщелку соответствует впадина на сочленовной поверхности другой кости, хотя разница в величине между ними может быть значительной. Мыщелковый сустав можно рассматривать как разновидность эллипсовидного, представляющую переходную форму от блоковидного сустава к эллипсовидному. Поэтому основной осью вращения у него будет фронтальная. От блоковидного мыщелковый сустав отличается тем, что имеется большая разница в величине и форме между сочленяющимися поверхностями. Вследствие этого в отличие от блоковидного в мыщелковом суставе возможны движения вокруг двух осей. От эллипсовидного сустава он отличается числом суставных головок. Мыщелковые суставы имеют всегда два мыщелка, расположенных более или менее сагиттально, которые или находятся в одной капсуле (например, два мыщелка бедренной кости, участвующие в коленном суставе), или располагаются в разных суставных капсулах, как в атлантозатылочном сочленении. Поскольку в мыщелковом суставе головки не имеют правильной конфигурации эллипса, вторая ось не обязательно будет горизонтальной, как это характерно для типичного эллипсовидного сустава; она может быть и вертикальной (коленный сустав). Если мыщелки расположены в разных суставных капсулах, то такой мыщелковый сустав близок по функции к эллипсовидному (атлантозатылочное сочленение). Если же мыщелки сближены и находятся в одной капсуле, как, например, в коленном суставе, то суставная головка в целом напоминает лежачий цилиндр (блок), рассеченный посередине (пространство между мыщелками). В этом случае мыщелковый сустав по функции будет ближе к блоковидному.
3. Седловидный сустав, (пример - запястно-пястное сочленение I пальца). Сустав этот образован 2 седловидными сочленовными поверхностями, сидящими "верхом" друг на друге, из которых одна движется вдоль и поперек другой. Благодаря этому в нем совершаются движения вокруг двух взаимно перпендикулярных осей: фронтальной (сгибание и разгибание) и сагиттальной (отведение и приведение). В двухосных суставах возможен также переход движения с одной оси на другую, т. е. круговое движение.

Многоосные суставы.

1. Шаровидные. Шаровидный сустав, (пример - плечевой сустав). Одна из суставных поверхностей образует выпуклую, шаровидной формы головку, другая - соответственно вогнутую суставную впадину. Теоретически движение может совершаться вокруг множества осей, соответствующих радиусам шара, но практически среди них обыкновенно различают три главные оси, перпендикулярные друг другу и пересекающиеся в центре головки: 1) поперечную (фронтальную), вокруг которой происходит сгибание, когда движущаяся часть образует с фронтальной плоскостью угол, открытый спереди, и разгибание, когда угол будет открыт сзади; 2) переднезаднюю (сагиттальную), вокруг которой совершаются отведение, и приведение; 3) вертикальную, вокруг которой происходит вращение, внутрь, и наружу. При переходе с одной оси на другую получается круговое движение. Шаровидный сустав - самый свободный из всех суставов. Так как величина движения зависит от разности площадей суставных поверхностей, то суставная ямка в таком суставе мала сравнительно с величиной головки. Вспомогательных связок у типичных шаровидных суставов мало, что определяет свободу их движений. Разновидность шаровидного сочленения - чашеобразный сустав. Суставная впадина его глубока и охватывает большую часть головки. Вследствие этого движения в таком суставе менее свободны, чем в типичном шаровидном суставе; образец чашеобразного сустава мы имеем в тазобедренном суставе, где такое устройство способствует большей устойчивости сустава.
2. Плоские суставы, (пример -), имеют почти плоские суставные поверхности. Их можно рассматривать как поверхности шара с очень большим радиусом, поэтому движения в них совершаются вокруг всех трех осей, но объем движений вследствие незначительной разности площадей суставных поверхностей небольшой.
Связки в многоосных суставах располагаются со всех сторон сустава.

Непрерывные соединения

Фиброзные (синдесмоз): связаны соединительной тканью.

Хрящевые (синхондроз): межпозвонковые диски.

Костные (синостоз): кость полностью срослась (таз, крестец).

Функции кожи

защитная (барьерная ) защищает организм от действия механических и химических факторов, ультрафиолетового излучения, проникновения микробов, потери и попадания воды извне

терморегуляторная за счет излучения тепла и испарения пота

участие в водно-солевом обмене связано с потоотделением

экскреторная выведение с потом продуктов обмена, солей и лекарств

депонирование крови в сосудах кожи может находиться до 1 литра крови

эндокринная и метаболическая синтез и накопление витамина D, а также гормонов

рецепторная благодаря наличию многочисленных нервных окончаний

иммунная захват, процессинг и транспорт антигенов с последующим развитием иммунной реакции

Различают:

толстую кожу (на ладонях и подошвах) — образованная толстым (400—600 мкм) эпидермисом, нет волос и сальных желёз;

тонкую кожу (на остальных частях тела) — состоит из тонкого (70-140 мкм) эпидермиса; есть волосы и кожные железы.[3]

Строение кожи:

Кожа состоит из эпидермиса, дермы и подкожно-жировой клетчатки (гиподермы).

Эпидермис включает в себя пять слоев эпидермальных клеток. Самый нижний слой — базальный — располагается на базальной мембране и представляет собой 1 ряд призматического эпителия. Сразу над ним лежит шиповатый слой (3-8 рядов клеток с цитоплазматическими выростами), затем следует зернистый слой (1-5 рядов уплощенных клеток), блестящий (2-4 ряда безъядерных клеток, различим на ладонях и стопах) и роговой слой, состоящий из многослойного ороговевающего эпителия. Эпидермис также содержит меланин, который окрашивает кожу и вызывает эффект загара.

Дерма, или собственно кожа, представляет собой соединительную ткань и состоит из 2-х слоев — сосочкового слоя, на котором располагаются многочисленные выросты, содержащие в себе петли капилляров и нервные окончания, и сетчатого слоя, содержащего кровеносные и лимфатические сосуды, нервные окончания, фолликулы волос, железы, а также эластические, коллагеновые и гладкомышечные волокна, придающие коже прочность и эластичность.

Подкожно-жировая клетчатка состоит из пучков соединительной ткани и жировых скоплений, пронизанных кровеносными сосудами и нервными волокнами. Физиологическая функция жировой ткани заключается в накоплении и хранении питательных веществ. Кроме того, она служит для терморегуляции и дополнительной защиты половых органов.

Помимо самой кожи в организме имеются её анатомические производные — образования, которые получают развитие из кожи и её зачатков. Различные выделения желёз, расположенных в коже, также являются частью наружного покрова организма. (ногти; волосы; чешуя; кожные железы, которые включают в себя:сальные железы, выделяющие кожное сало, которое служит смазкой для волос и предохраняет кожу; потовые железы, осуществляющие выделение из организма воды и растворённых продуктов обмена веществ. Испарение пота является важным звеном терморегуляции. молочные железы (развитые у женщин) вырабатывают грудное молоко, которое имеет исключительно важное значение для питания новорождённого ребёнка. слизистые железы рыб

Дыхательные пути

Верхние дыхательные пути

полость носа,

носовая часть глотки (носоглотка),

ротовая часть глотки (ротоглотка)

гортанная часть глотки (гортаноглотка)

гортань

Нижние дыхательные пути

трахея,

бронхи

Воздухоносные пути — органы человека, обеспечивающие процесс дыхания, доступ воздуха в легкие. В воздухоносных путях происходит очищение, увлажнение, согревание воздуха; именно отсюда поступают в центральную нервную систему сигналы от обонятельных, температурных и механических рецепторов. При дыхании через нос в организм поступает кислорода на 25% больше, чем при дыхании через рот. Существует также мнение, что дыхательные пути являются воротами, через которые в организм попадают болезнетворные микробы. Поэтому очевидно, что необходимые защитные свойства организма обеспечиваются нормальным состоянием дыхательных путей. Кроме того, глотка является и частью пищеварительной системы, а гортань — органом речи.

 

Строение альвеол.

Альвеола — концевая часть дыхательного аппарата в лёгком, имеющая форму пузырька, открытого в просвет альвеолярного хода. Альвеолы участвуют в акте дыхания, осуществляя газообмен с лёгочными капиллярами. Альвеолы имеют многоугольную форму, разделяются меж альвеолярными перегородками толщиной 2 — 8 мкм. Меж альвеолярные перегородки представлены стенками альвеол, расположенными между ними элементами соединительной ткани (эластическими, коллагеновыми и ретикулярными волокнами) и сетью капилляров, участвующих в газообмене. Некоторые альвеолы сообщаются между собой благодаря отверстиям в меж альвеолярных перегородках («порам Кона»).

Общее количество альвеол в обоих легких человека составляет 600—700 миллионов. Диаметр одной альвеолы новорождённого ребёнка в среднем 150 мкм, взрослого — 280 мкм, в пожилом возрасте достигает 300—350 мкм. Суммарная площадь поверхности альвеол изменяется от 40 м² при выдохе до 120 м² при вдохе[1].

Внутренний слой альвеолярной стенки сформирован сквамозными (дыхательными) альвеоцитами (альвеоциты 1-го типа) и большими альвеоцитами (альвеоциты 2-го типа), хеморецепторами (альвеоциты 3-го типа), а также макрофагами. Значительно бо́льшую площадь занимают сквамозные (плоские) клетки (97,5 % внутренней поверхности альвеолы), участвующие в газообмене. Большие альвеоциты (гранулярные, кубовидные, секреторные клетки), как и дыхательные альвеоциты, расположены на базальной мембране; эти клетки вырабатывают сурфактант — поверхностно-активное вещество, выстилающее изнутри альвеолы и препятствующее их спадению.

Аэрогематический (воздушно-кровяной) барьер между дыхательными альвеоцитами и капиллярами образован их базальными мембранами и составляет 0,5 мкм. В некоторых местах базальные мембраны расходятся, формируя щели, заполненные элементами соединительной ткани. Каждый капилляр участвует в газообмене с несколькими альвеолами.

 

Функции

Основная задача малого круга газообмен в лёгочных альвеолах и теплоотдача.

Важной особенностью кровоснабжения легких является то, что сосуды малого круга кровообращения — это система низкого давления. Среднее давление в легочной артерии у человека составляет 15—25 мм рт. ст., а давление в легочных венах — 6—8 мм рт. ст. Таким образом, градиент давления, определяющий движение крови по сосудам малого круга, составляет 9—15 мм рт. ст., что значительно меньше градиента давления в большом круге кровообращения. Большой круг кровообращения начинается в левом желудочке и оканчивается в правом предсердии; а малый круг кровообращения начинается в правом желудочке и оканчивается в левом предсердии. Функция большого круга кровообращения- Кровоснабжение всех органов организма человека, в том числе лёгких, а малого - газообмен в лёгочных альвеолах и теплоотдача.

Структура

Начинается из левого желудочка, выбрасывающего во время систолы кровь в аорту. От аорты отходят многочисленные артерии, в результате кровоток распределяется согласно сегментарному строению по сосудистым сетям, обеспечивая подачу кислорода и питательных веществ всем органам и тканям. Дальнейшее деление артерий происходит на артериолы и капилляры. Общая площадь всех капилляров в организме человека примерно 1 000 м2. Через тонкие стенки капилляров артериальная кровь отдаёт клеткам тела питательные вещества и кислород, а забирает от них углекислый газ и продукты метаболизма, попадает в венулы становясь венозной. Венулы собираются в вены. К правому предсердию подходят две полые вены: верхняя и нижняя, которыми заканчивается большой круг кровообращения. Время прохождения крови по большому кругу кровообращения составляет 24 секунды.

Особенности кровотока

§ Венозный отток от непарных органов брюшной полости осуществляется не напрямую в нижнюю полую вену, а через воротную вену(сформированную верхней, нижней брыжеечными и селезёночной венами). Воротная вена, войдя в ворота печени (отсюда и название) вместе с печёночной артерией делится в печёночных балках на капиллярную сеть, где кровь очищается и только после этого по печёночным венам поступает в нижнюю полую вену.

§ Гипофиз также обладает воротной или «чудесной сетью»: передняя доля гипофиза (аденогипофиз) получает питание из верхней гипофизарной артерии, которая распадается на первичную капиллярную сеть, контактирующую с аксовазальными синапсами нейросекреторных нейронов медиобазального гипоталамуса, вырабатывающих рилизинг-гормоны. Капилляры первичной капиллярной сети и аксовазальные синапсы образуют первый нейрогемальный орган гипофиза. Капилляры собираются в портальные вены, которые идут в переднюю долю гипофиза и там повторно разветвляются, образуя вторичную капиллярную сеть, по которой рилизинг-гормоны достигают аденоцитов. В эту же сеть секретируются тропные гормоны аденогипофиза после чего капилляры сливаются в передние гипофизарные вены, несущие кровь с гормонами аденогипофиза к органам-мишеням. Поскольку капилляры аденогипофиза лежат между двумя венами (портальной и гипофизарной), они относятся к "чудесной" капиллярной сети. Задняя доля гипофиза (нейрогипофиз) получает питание из нижней гипофизарной артерии, на капиллярах которой образуются аксовазальные синапсы нейросекреторных нейронов — второй нейрогемальный орган гипофиза. Капилляры собираются в задние гипофизарные вены. Таким образом, задняя доля гипофиза (нейрогипофиз) в отличие от передней (аденогипофиз) не производит собственных гормонов, а депонирует и секретирует в кровь гормоны, вырабатывающиеся в ядрах гипоталамуса.

§ В почках также существуют две капиллярные сети — артерии разделяются на приносящие артериолы капсулы Шумлянского-Боумена, каждая из которых распадается на капилляры и собирается в выносящую артериолу. Выносящая артериола доходит до извитого канальца нефрона и повторно распадается на капиллярную сеть.

§ Лёгкие также имеют двойную капиллярную сеть — одна принадлежит большому кругу кровообращения и питает лёгкие кислородом и энергией, забирая продукты метаболизма, а другая — малому кругу и служит для оксигенации (вытеснения из венозной крови углекислого газа и насыщения её кислородом).

§ Сердце также имеет собственную сосудистую сеть: по венечным (коронарным) артериям в диастолу кровь попадает в сердечную мышцу, проводящую систему сердца и так далее, а в систолу через капиллярную сеть выдавливается в коронарные вены, впадающие в коронарный синус, открывающийся в правое предсердие.

Функции

Кровоснабжение всех органов организма человека, в том числе лёгких.

Виды артерий

Эластический тип — аорта, крупные артерии. В стенке такой артерии преимущественно эластические волокна, мышечных элементов практически нет.

Переходный тип — артерии среднего диаметра. В стенке и эластические волокна, и мышечные элементы.

Мышечный тип — артериолы, прекапилляры. В стенке преимущественно мышечные элементы.

Вены - кровеносный сосуд, по которому кровь движется к сердцу. Вены получают кровь из капилляров. Вены объединяются в венозную систему, часть сердечно-сосудистой системы. Сосуды, по которым кровь течет от сердца, называются артериями. В нескольких системах наблюдается разделение вен на капиллярную сеть и повторное слияние, например в портальной системе печени (воротная вена) и в гипоталамусе. Вена состоит из нескольких слоев, как и артерия. Это эндотелий (внешний слой), мягкий соединительный слой, мышечный и плотная соединительная ткань. Если в артерии кровь под большим напором толкается от сердца, поэтому нужна твердая стенка, то в вене наоборот — стенка сосудов тонкая. И зачастую возникают проблемы с движением крови. Так как давление по мере отдаления от сердца падает, в капиллярах оно практически равно атмосферному, тока крови не создается, поэтому существует целая система приспособлений для «проталкивания» крови по венам:

Во-первых, это клапаны вен, которые позволяют крови течь только в одну сторону — к сердцу, иначе клапаны заполняются встречной кровью и движения не происходит.

Во-вторых, это специальный венозный пульс (волна сокращений вен), к тому же движение крови может осуществляться и мускулатурой сосудов. Параллельно с растягиванием легких происходит растягивание вены и всасывают кровь из сосудов верхних и нижних конечностей, отчего диафрагму называют иногда венозным сердцем.

В голове и шее меньше клапанов. В неудобной позе венозный отток замедляется, возможно накопление крови больше, чем нужно, в венозном русле, от этого происходит расширение вен. Варикозное расширение вен таза называется геморрой.

важнейшие вены организма:

Яремная вена

Лёгочные вены

Воротная вена

Полая верхняя вена

Полая нижняя вена

Подвздошная вена

Бедренная вена

Подколенная вена

Подкожная большая вена ноги

Скрытая малая вена ноги

Капилляры — микроскопические сосуды, соединяющие артериолы с венулами. Общая длина всех капилляров — 100 тысяч км в одном человеке. Стенка образована тонкой соединительно-тканной базальной мембраной.

Виды артерий

Эластический тип — аорта, крупные артерии. В стенке такой артерии преимущественно эластические волокна, мышечных элементов практически нет.

Переходный тип — артерии среднего диаметра. В стенке и эластические волокна, и мышечные элементы.

Мышечный тип — артериолы, прекапилляры. В стенке преимущественно мышечные элементы.

Вены несут кровь к сердцу. Стенки тоньше и слабее артериальных, оболочки те же. Стенки могут спадаться, мелкие вены имеют клапаны — препятствующие обратному току крови в тех местах, где кровь течет вверх по организму.

Капилляры - являются самыми тонкими сосудами в организме человека и других животных. Средний их диаметр составляет 5-10 мкм. Соединяя артерии и вены, они участвуют в обмене веществ между кровью и тканями. Стенки капилляров состоят из одного слоя клеток эндотелия. Толщина этого слоя настолько мала, что позволяет проходить через него молекулам кислорода, воды, липидов и многим другим. Продукты, образующиеся в результате жизнедеятельности организма (такие как диоксид углерода и мочевина), также могут проходить через стенку капилляра для транспортировки их к месту выведения из организма. На проницаемость капиллярной стенки оказывают влияние цитокины.

В функции эндотелия входит также и перенос питательных веществ, веществ-мессенджеров и других соединений. В некоторых случаях крупные молекулы могут быть слишком велики для диффузии через эндотелий и для их переноса используются механизмы эндоцитоза и экзоцитоза. Эндоцито́з — процесс захвата внешнего материала клеткой, осуществляемый путём образования мембранных везикул. В результате эндоцитоза клетка получает для своей жизнедеятельности гидрофильный материал, который иначе не проникает через липидный бислой клеточной мембраны. Экзоцитоз —клеточный процесс, при котором внутриклеточные везикулы (мембранные пузырьки) сливаются с внешней клеточной мембраной. При экзоцитозе содержимое секреторных везикул (экзоцитозных пузырьков) выделяется наружу, а их мембрана сливается с клеточной мембраной. Практически все макромолекулярные соединения (белки, пептидные гормоны и др.) выделяются из клетки этим способом.

В механизме иммунного ответа, клетки эндотелия выставляют молекулы-рецепторы на своей поверхности, задерживая иммунные клетки и помогая их последующему переходу во вне сосудистое пространство к очагу инфекции или иного повреждения.

Кровоснабжение органов происходит за счет "капиллярной сети". Чем больше метаболическая активность клеток, тем больше капилляров потребуется для обеспечения потребности в питательных веществах. В обычных условиях, капиллярная сеть содержит всего лишь 25% от того объема крови, который она может вместить. Однако, этот объем может быть увеличен за счет механизмов само регуляции путем расслабления гладкомышечных клеток. Следует отметить, что стенки капилляров не содержат мышечных клеток, и поэтому любое увеличение просвета является пассивным. Любые сигнальные вещества, продуцируемые эндотелием (такие как эндотеллин для сокращения и оксид азота для дилатации), действуют на мышечные клетки расположенных в непосредственной близости крупных сосудов, таких как артериолы.

Классификация капилляров

По структурно-функциональным особенностям различают три типа капилляров: соматический, фенестрированный и синусоидный, или перфорированный.

Наиболее распространенный тип капилляров - соматический. В таких капиллярах сплошная эндотелиальная выстилка и сплошная базальной мембраной. Капилляры соматического типа находятся в мышцах, органах нервной системы, в соединительной ткани, в экзокринных железах.

Второй тип - фенестрированные капилляры. Они характеризуются тонким эндотелием с порами в эндотелиоцитах. Поры затянуты диафрагмой, базальная мембрана непрерывна. Фенестрированные капилляры встречаются в эндокринных органах, в слизистой оболочке кишки, в бурой жировой ткани, в почечном тельце, сосудистом сплетении мозга.

Третий тип - капилляры перфорированного типа, или синусоиды. Это капилляры большого диаметра, с крупными межклеточными и трансцеллюлярными порами (перфорациями). Базальная мембрана прерывистая. Синусоидные капилляры характерны для органов кроветворения, в частности для костного мозга, селезенки, а также для печени.

Анастамоз – соединения между нервами, мышцами, кровеносными или лимфатическими сосудами. Анастомоз между артериями и венами без образования капиллярных сетей — артериовенозные — имеют значение в регуляции кровоснабжения органов. Много анастомозов образует внутренняя сонная артерия.

Классификация. Различают две группы анастомозов: истинные ABA (или шунты), и атипичные ABA (или полушунты). В истинных анастомозах в венозное русло сбрасывается чисто артериальная кровь. В атипичных анастомозах течет смешанная кровь, т.к. в них осуществляется газообмен. Атипичные анастомозы (полушунты) представляют собой короткий, но широкий, капилляр. Поэтому сбрасываемая в венозное русло кровь является не полностью артериальной.

Первая группа - истинных анастомозов может иметь различную внешнюю форму - прямые короткие соустья, петли, ветвящиеся соединения. Истинные АВА подразделяются на две подгруппы: простые и сложные. Сложные АВА снабжены специальными сократительными структурами, регулирующими кровоток. Сюда относят анастомозы с мышечной регуляцией, а также анастомозы т.н. гломусного, или клубочкового, типа, - с особыми эпителиоидными клетками.

ABA, особенно гломусного типа, богато интернированы. ABA принимают участие в регуляции кровенаполнения органов, перераспределении артериальной крови, регуляции местного и общего давления крови, а также в мобилизации депонированной в венулах крови.

 

9. Артериальная система головы и головного мозга. Система наружной и внутренней сонной артерии..

Головной мозг – главный регулятор всех жизненных функций организма и его взаимоотношений с окружающей средой. Это определило особые черты его метаболизма и гемодинамического обеспечения, осуществляемого системой мозгового кровообращения.

Кровоснабжение мозга характеризуется наличием оптимального режима, обеспечивающего в процессе жизнедеятельности непрерывное и своевременное пополнение его энергетических и иных затрат. Это достигается последовательным включением ряда факторов, приводящих в действие механизмы саморегуляции мозгового кровообращения. Их наличие обуславливает относительную независимость мозгового кровотока от изменений общей гемодинамики, что составляет особенность мозгового кровообращения. Величина мозгового кровотока регулируется главным образом металлической активностью вещества мозга: при усилении функциональной активности мозга или его отдельных систем повышается уровень обменных процессов и усиливается кровообращение. Обмен веществ в головном мозге в связи с высокой интенсивностью признаётся метаболизмом активности. Всё это определяет исключительно высокую потребность головного мозга в кислороде. Головной мозг, в отличие от других органов, практически не располагает запасами кислорода, потребляемого им для получения энергии путём аэробного окисления глюкозы до углекислоты и воды. Этим объясняется высокая чувствительность нервной ткани к гипоксии. Необратимые повреждения нервных клеток коры головного мозга развиваются в результате ишемии более 5 минут. При этом последующая перфузия не приводит к восстановлению кровотока на различных территориях мозга вследствие перекрытия капиллярного отдела микроциркуляторного русла. Перемещение крови происходит из областей мозга, менее активных в функциональном отношении, в области с интенсивной деятельностью. Величина локального кровотока в это время значительно повышается в одних областях, снижаясь одновременно в других на фоне стабильного или, реже, несколько увеличенного кровотока в мозге в целом.

Таким образом, особенностями мозгового кровообращения являются:
- наличие оптимального режима в виде адекватности условиям функционирования мозга;
- относительная независимость от изменений общей гемодинамики;
- высокая интенсивность в связи с высокой потребностью мозга в кислороде.

Сонные артерии

Общая сонная артерия (a. carotis communis), правая и левая, идет вверх рядом с трахеей и пищеводом. На уровне верхнего края щитовидного хряща она делится на наружную сонную артерию (ветвится вне полости черепа) и внутреннюю сонную артерию, проходящую внутрь черепа и идущую к мозгу.

Наружная сонная артерия (a. carotis externa) направляется вверх и ветвится в толще околоушной железы, давая верхнечелюстную и поверхностную височные артерии. На своем пути артерия снабжает кровью наружные части головы и шеи, полости рта и носа, щитовидную железу, гортань, язык, небо, миндалины, грудинно-ключично-сосцевидную и затылочную мышцы, поднижнечелюстную, подъязычную и околоушную слюнные железы, кожу, кости, мимические и жевательные мышцы головы, зубы верхней и нижней челюстей, твердую мозговую оболочку, наружное и среднее ухо.

Внутренняя сонная артерия (a. carotis interna) идет вверх к основанию черепа. На шее она не ветвится. Входит в полость черепа через канал сонной артерии в височной кости, пройдя через твердую и паутинную оболочки, ветвится. Снабжает кровью мозг и глаза.

Функционирование нейронов мозга требует значительных затрат энергии, которую мозг получает через сеть кровоснабжения. Головной мозг снабжается кровью из бассейна трёх крупных артерий — двух внутренних сонных артерий (лат. a. carotis interna) и основной артерии (лат. a. basilaris). В полости черепа внутренняя сонная артерия имеет продолжение в виде передней и средней мозговых артерий (лат. aa. cerebri anterior et media). Основная артерия находится на вентральной поверхности ствола мозга и образована слиянием правой и левой позвоночных артерий. Её ветвями являются задние мозговые артерии. Перечисленные три пары артерий (передняя, средняя, задняя), анастомозируя между собой, образуют артериальный (виллизиев) круг. Для этого передние мозговые артерии соединяются между собой передней соединительной артерией (лат. a. communicans anterior), а между внутренней сонной (или, иногда средней мозговой) и задней мозговыми артериями, с каждой стороны, имеется задняя соединительная артерия (лат. aa.communicans posterior). Отсутствие анастомозов между артериями становится заметным при развитии сосудистой патологии (инсультов), когда из-за отсутствия замкнутого круга кровоснабжения область поражения увеличивается. Кроме того, возможны многочисленные варианты строения (разомкнутый круг, нетипичное деление сосудов с формированием трифуркации и др.). Если активность нейронов в одном из отделов усиливается, увеличивается и кровоснабжение этой области. Регистрировать изменения функциональной активности отдельных участков головного мозга позволяют такие методы неинвазивной нейровизуализации как функциональная магнитно-резонансная томография и позитрон-эмиссионная томография.

Между кровью и тканями мозга имеется гематоэнцефалический барьер, который обеспечивает избирательную проницаемость веществ, находящиихся в сосудистом русле, в церебральную ткань. В некоторых участках мозга этот барьер отсутствует (гипоталамическая область) или отличается от других частей, что связано с наличием специфических рецепторов и нейроэндокринных образований. Этот барьер защищает мозг от многих видов инфекции. В то же время, многие лекарственные препараты, эффективные в других органах, не могут проникнуть в мозг через барьер.

Кровоснабжение головного мозга осуществляется двумя внутренними сонными артериями и двумя позвоночными артериями. Отток крови происходит по двум яремным венам.

В состоянии покоя головной мозг потребляет около 15 % объема крови, и при этом потребляет 20-25 % кислорода, получаемого при дыхании.

Сонные артерии формируют каротидный бассейн. Они берут своё начало в грудной полости: правая от плечеголовного ствола (лат. truncus brachiocephalicus), левая — от дуги аорты (лат. arсus aortae). Сонные артерии обеспечивают около 70-85 % притока крови к мозгу.

Вертебро-базилярная система

Позвоночные артерии формируют вертебро-базилярный бассейн. Они кровоснабжают задние отделы мозга (продолговатый мозг, шейный отдел спинного мозга, и мозжечок). Позвоночные артерии берут своё начало в грудной полости, и проходят к головному мозгу в костном канале, образованном поперечными отростками шейных позвонков. По разным данным, позвоночные артерии обеспечивают около 15-30 % притока крови к головному мозгу.

В результате слияния позвоночные артерии образуют основную артерию (базилярная артерия, а. basilaris) — непарный сосуд, который располагается в базилярной борозде моста.

Виллизиев круг

Возле основания черепа магистральные артерии образуют вилизиев круг, от которого и отходят артерии, которые поставляют кровь в ткани головного мозга. В формировании Виллизиева круга участвуют следующие артерии:

§ передняя мозговая артерия

§ передняя соединительная артерия

§ задняя соединительная артерия

§ задняя мозговая артерия

Венозный отток

Венозные синусы головного мозга — венозные коллекторы, расположенные между листками твёрдой мозговой оболочки. Получают кровь из внутренних и наружных вен головного мозга.

Яремные вены (лат. venae jugulares) — парные, располагаются на шее и отводят кровь от шеи и головы.

 

 

Венозная система

От органов кровь возвращается через посткапилляры в венулы и вены в правое предсердие по верхней и нижней полым венам, а также коронарным венам (венам, возвращающим кровь от сердечной мышцы).Венозный возврат осуществляется по нескольким механизмам. Во-первых, благодаря перепаду давлений на конце капилляра (примерно 25 мм рт.ст.) и предсердий (около 0). Во-вторых, для вен скелетных мышц важно, что при сокращении мышцы давление «извне» превышает давление в вене, так что кровь «выжимается» из вен сократившейся мышцы. Присутствие же венозных клапанов определяет направление движения крови при этом — от артериального конца к венозному. Этот механизм особенно важен для вен нижних конечностей, поскольку здесь кровь по венам поднимается, преодолевая гравитацию. В-третьих, присасывающая роль грудной клетки. Во время вдоха давление в грудной клетке падает ниже атмосферного (которое мы принимаем за ноль), что обеспечивает дополнительный механизм возврата крови. Величина просвета вен, а соответственно и их объём, значительно превышают таковые артерий. Кроме того, гладкие мышцы вен обеспечивают изменение их объёма в весьма широких пределах, приспосабливая их ёмкость к меняющемуся объёму циркулирующей крови. поэтому физиологическая роль вен определяется как «ёмкостные сосуды».

Ве́на — кровеносный сосуд, по которому кровь движется к сердцу. Вены получают кровь из капилляров. Вены объединяются в венозную систему, часть сердечно-сосудистой системы. Сосуды, по которым кровь течет от сердца, называются артериями.

В нескольких системах наблюдается разделение вен на капиллярную сеть и повторное слияние, например в портальной системе печени (воротная вена) и в гипоталамусе.

Важнейшие вены

Важнейшие вены организма: Яремная вена, Лёгочные вены, Воротная вена, Полая верхняя вена, Подвздошная вена, Подколенная вена, Подкожная большая вена ноги, Скрытая малая вена ноги.

Вена состоит из нескольких слоев. Это эндотелий (внешний слой), мягкий соединительный слой, мышечный и плотная соединительная ткань. Если в артерии кровь под большим напором толкается от сердца, поэтому нужна твердая стенка, то в вене наоборот — стенка сосудов тонкая. И зачастую возникают проблемы с движением крови. Так как давление по мере отдаления от сердца падает, в капиллярах оно практически равно


Поделиться с друзьями:

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.092 с.